Use of fluoroquinolones is the single most important risk factor for the high bacterial load in patients with nasal and gastrointestinal colonization by multidrug-resistant Acinetobacter baumannii

2015 ◽  
Vol 34 (12) ◽  
pp. 2359-2366 ◽  
Author(s):  
V. C. C. Cheng ◽  
J. H. K. Chen ◽  
S. Y. C. So ◽  
S. C. Y. Wong ◽  
M. K. Yan ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nam Su Ku ◽  
Su-Hyung Lee ◽  
Young- soun Lim ◽  
Heun Choi ◽  
Jin Young Ahn ◽  
...  

AbstractUnfortunately, the options for treating multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infections are extremely limited. Recently, fosfomycin and minocycline were newly introduced as a treatment option for MDR A. baumannii infection. Therefore, we investigated the efficacy of the combination of colistin with fosfomycin and minocycline, respectively, as therapeutic options in MDR A. baumannii pneumonia. We examined a carbapenem-resistant A. baumannii isolated from clinical specimens at Severance Hospital, Seoul, Korea. The effect of colistin with fosfomycin, and colistin with minocycline on the bacterial counts in lung tissue was investigated in a mouse model of pneumonia caused by MDR A. baumannii. In vivo, colistin with fosfomycin or minocycline significantly (p < 0.05) reduced the bacterial load in the lungs compared with the controls at 24 and 48 h. In the combination groups, the bacterial loads differed significantly (p < 0.05) from that with the more active antimicrobial alone. Moreover, the combination regimens of colistin with fosfomycin and colistin with minocycline showed bactericidal and synergistic effects compared with the more active antimicrobial alone at 24 and 48 h. This study demonstrated the synergistic effects of combination regimens of colistin with fosfomycin and minocycline, respectively, as therapeutic options in pneumonia caused by MDR A. baumannii.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260627
Author(s):  
Gabriella Bergamini ◽  
Maria Elisa Perico ◽  
Stefano Di Palma ◽  
Daniela Sabatini ◽  
Filippo Andreetta ◽  
...  

Infectious pneumonia induced by multidrug resistant (MDR) Acinetobacter baumannii strains is among the most common and deadly forms of healthcare acquired infections. Over the years, different strategies have been put in place to increase host susceptibility to MDR A. baumannii, since only a self-limiting pneumonia with no or limited local bacterial replication was frequently obtained in mouse models. Direct instillation into the trachea or intranasal inoculation of the bacterial suspension are the techniques used to induce the infection in most of the preclinical models of pneumonia developed to date. More recently, the oropharyngeal aspiration procedure has been widely described in the literature for a variety of purposes including pathogens administration. Aim of this study was to compare the oropharyngeal aspiration technique to the intranasal inoculation and intratracheal instillation in the ability of inducing a consistent lung infection with two MDR A. baumannii clinical isolates in immunocompromised mice. Moreover, pneumonia obtained by bacteria administration with two out of three techniques, intratracheal and oropharyngeal, was characterised in terms of histopathology of pulmonary lesions, biomarkers of inflammation level and leukocytes cells infiltration extent after mice treatment with either vehicle or the antibiotic tigecycline. The data generated clearly showed that both strains were not able to colonize the lungs when inoculated by intranasal route. By contrast, the bacterial load in lungs of mice intratracheally or oropharyngeally infected significantly increased during 26 hours of monitoring, thus highlighting the ability of these strains to generate the infection when directly instilled into the lower respiratory airways. Furthermore, the intragroup variability of mice was significantly reduced with respect to those intranasally administered. Tigecycline was efficacious in lung bacterial load and cytokines release reduction. Findings were supported by semi-quantitative histopathological evaluation of the pulmonary lesions and by inflammatory biomarkers analysis. To conclude, both intratracheal instillation and oropharyngeal aspiration techniques showed to be suitable methods for inducing a robust and consistent pneumonia infection in mice when difficult MDR A. baumannii clinical isolates were used. Noteworthy, oropharyngeal aspiration not requiring specific technical skills and dedicated equipment, was proven to be a safer, easier and faster technique in comparison to the intratracheal instillation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5353
Author(s):  
E. H. T. Thulshan Jayathilaka ◽  
Dinusha C. Rajapaksha ◽  
Chamilani Nikapitiya ◽  
Mahanama De Zoysa ◽  
Ilson Whang

Acinetobacter baumannii is a serious nosocomial pathogen with multiple drug resistance (MDR), the control of which has become challenging due to the currently used antibiotics. Our main objective in this study is to determine the antibacterial and antibiofilm activities of the antimicrobial peptide, Octominin, against MDR A. baumannii and derive its possible modes of actions. Octominin showed significant bactericidal effects at a low minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of 5 and 10 µg/mL, respectively. Time-kill kinetic analysis and bacterial viability tests revealed that Octominin showed a concentration-dependent antibacterial activity. Field-emission scanning electron microscopy (FE-SEM) analysis revealed that Octominin treatment altered the morphology and membrane structure of A. baumannii. Propidium iodide (PI) and reactive oxygen species (ROS) generation assays showed that Octominin increased the membrane permeability and ROS generation in A. baumannii, thereby causing bacterial cell death. Further, a lipopolysaccharides (LPS) binding assay showed an Octominin concentration-dependent LPS neutralization ability. Biofilm formation inhibition and eradication assays further revealed that Octominin inhibited biofilm formation and showed a high biofilm eradication activity against A. baumannii. Furthermore, up to a concentration of 100 µg/mL, Octominin caused no hemolysis and cell viability changes in mammalian cells. An in vivo study in zebrafish showed that the Octominin-treated group had a significantly higher relative percentage survival (54.1%) than the untreated group (16.6%). Additionally, a reduced bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octominin in vivo. Collectively, these data suggest that Octominin exhibits significant antibacterial and antibiofilm activities against the multidrug-resistant A. baumannii, and this AMP can be developed further as a potent AMP for the control of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document