The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells

2020 ◽  
Vol 35 (8) ◽  
pp. 1741-1750
Author(s):  
Junqing Gan ◽  
Shumin Li ◽  
Yu Meng ◽  
Yuanyu Liao ◽  
Mingxia Jiang ◽  
...  
2012 ◽  
Author(s):  
Peiwen Yang ◽  
Ching-Yueh Hsieh ◽  
Mien-Chie Hung ◽  
Fang-Tzu Kuo ◽  
Yu-Ting Huang ◽  
...  

2014 ◽  
Vol 33 (5) ◽  
pp. 1527-1536 ◽  
Author(s):  
Yan Jing Li ◽  
Jian Hua Zhou ◽  
Xiao Xue Du ◽  
De Xin Jia ◽  
Chun Long Wu ◽  
...  

2010 ◽  
Author(s):  
Pei-Wen Yang ◽  
Mien-Chie Hung ◽  
Mien-Chie Hung ◽  
Ying-Hao Wang ◽  
En-Chi Tung ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 841 ◽  
Author(s):  
Hiromi Kataoka ◽  
Hirotada Nishie ◽  
Mamoru Tanaka ◽  
Makiko Sasaki ◽  
Akihiro Nomoto ◽  
...  

In 2015, the Japanese health insurance approved the use of a second-generation photodynamic therapy (PDT) using talaporfin sodium (TS); however, its cancer cell selectivity and antitumor effects of TS PDT are not comprehensive. The Warburg effect describes the elevated rate of glycolysis in cancer cells, despite the presence of sufficient oxygen. Because cancer cells absorb considerable amounts of glucose, they are visible using positron emission tomography (PET). We developed a third-generation PDT based on the Warburg effect by synthesizing novel photosensitizers (PSs) in the form of sugar-conjugated chlorins. Glucose-conjugated (tetrafluorophenyl) chlorin (G-chlorin) PDT revealed significantly stronger antitumor effects than TS PDT and induced immunogenic cell death (ICD). ICD induced by PDT enhances cancer immunity, and a combination therapy of PDT and immune checkpoint blockers is expected to synergize antitumor effects. Mannose-conjugated (tetrafluorophenyl) chlorin (M-chlorin) PDT, which targets cancer cells and tumor-associated macrophages (TAMs), also shows strong antitumor effects. Finally, we synthesized a glucose-conjugated chlorin e6 (SC-N003HP) that showed 10,000–50,000 times stronger antitumor effects than TS (IC50) in vitro, and it was rapidly metabolized and excreted. In this review, we discuss the potential and the future of next-generation cancer cell-selective PDT and describe three types of sugar-conjugated PSs expected to be clinically developed in the future.


2018 ◽  
Vol 48 (5) ◽  
pp. 2035-2045 ◽  
Author(s):  
Yanjing Li ◽  
Hong Sui ◽  
Cailing Jiang ◽  
Shumin Li ◽  
Yu Han ◽  
...  

Background/Aims: Although photodynamic therapy (PDT) can relieve esophageal obstruction and prolong survival time of patients with esophageal cancer, it can induce nuclear factor-kappa B (NF-κB) activation in many cancers, which plays a negative role in PDT. Dihydroartemisinin (DHA), the most potent artemisinin derivative, can enhance the effect of PDT on esophageal cancer cells. However, the mechanism is still unclear. Methods: We generated stable cell lines expressing the super-repressor form of the NF-κB inhibitor IκBα and cell lines with lentivirus vector-mediated silencing of the HIF-1α gene. Esophageal xenograft tumors were created by subcutaneous injection of Eca109 cells into BALB/c nude mice. Four treatment groups were analyzed: a control group, photosensitizer alone group, light alone group, and PDT group. NF-κB expression was detected by an electrophoretic mobility shift assay, hypoxia-inducible factor α (HIF-1α) and vascular endothelial growth factor (VEGF) by real-time PCR, NF-κB, HIF-1α, and VEGF protein by western blot, and Ki-67, HIF-1α, VEGF, and NF-κB protein by immunohistochemistry. Results: PDT increased NF-κB activity and the gene expression of HIF-1α and VEGF in vitro and in vivo. In contrast, the DHA groups, particularly the combined DHA and PDT treatment group, abolished the effect. The combined treatment significantly inhibited tumor growth in vitro and in vivo. NF-κB activity and HIF-1α expression were also reduced in the stable IκBα expression group, whereas the former showed no change in HIF-1α-silenced cells. Conclusion: DHA might increase the sensitivity of esophageal cancer cells to PDT by inhibiting the NF-κB/HIF-1α/VEGF pathway.


2017 ◽  
Vol 18 (9) ◽  
Author(s):  
Mohadeseh Hasanpourghadi ◽  
Chung Yeng Looi ◽  
Ashok Kumar Pandurangan ◽  
Gautam Sethi ◽  
Won Fen Wong ◽  
...  

2018 ◽  
Vol 1870 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Linchong Sun ◽  
Caixia Suo ◽  
Shi-ting Li ◽  
Huafeng Zhang ◽  
Ping Gao

2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


Sign in / Sign up

Export Citation Format

Share Document