Sparse graphs and an augmentation problem
AbstractFor two integers $$k>0$$ k > 0 and $$\ell $$ ℓ , a graph $$G=(V,E)$$ G = ( V , E ) is called $$(k,\ell )$$ ( k , ℓ ) -tight if $$|E|=k|V|-\ell $$ | E | = k | V | - ℓ and $$i_G(X)\le k|X|-\ell $$ i G ( X ) ≤ k | X | - ℓ for each $$X\subseteq V$$ X ⊆ V for which $$i_G(X)\ge 1$$ i G ( X ) ≥ 1 , where $$i_G(X)$$ i G ( X ) denotes the number of induced edges by X. G is called $$(k,\ell )$$ ( k , ℓ ) -redundant if $$G-e$$ G - e has a spanning $$(k,\ell )$$ ( k , ℓ ) -tight subgraph for all $$e\in E$$ e ∈ E . We consider the following augmentation problem. Given a graph $$G=(V,E)$$ G = ( V , E ) that has a $$(k,\ell )$$ ( k , ℓ ) -tight spanning subgraph, find a graph $$H=(V,F)$$ H = ( V , F ) with the minimum number of edges, such that $$G\cup H$$ G ∪ H is $$(k,\ell )$$ ( k , ℓ ) -redundant. We give a polynomial algorithm and a min-max theorem for this augmentation problem when the input is $$(k,\ell )$$ ( k , ℓ ) -tight. For general inputs, we give a polynomial algorithm when $$k\ge \ell $$ k ≥ ℓ and show the NP-hardness of the problem when $$k<\ell $$ k < ℓ . Since $$(k,\ell )$$ ( k , ℓ ) -tight graphs play an important role in rigidity theory, these algorithms can be used to make several types of rigid frameworks redundantly rigid by adding a smallest set of new bars.