Gene expression pattern of trophoblast-specific transcription factors in trophectoderm by analysis of single-cell RNA-seq data of human blastocyst

2021 ◽  
Vol 21 (2) ◽  
pp. 205-214
Author(s):  
Yajun Liu ◽  
Yi Zhang ◽  
Shiwen Li ◽  
Jinquan Cui
PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61768 ◽  
Author(s):  
B. Alex Merrick ◽  
Dhiral P. Phadke ◽  
Scott S. Auerbach ◽  
Deepak Mav ◽  
Suzy M. Stiegelmeyer ◽  
...  

2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhouyiyuan Xue ◽  
Abdur Rahman Ansari ◽  
Xing Zhao ◽  
Kun Zang ◽  
Yu Liang ◽  
...  

The thymus is a lobulated unique lymphoid immune organ that plays a critical role in the selection, development, proliferation, and differentiation of T cells. The thymus of developing chickens undergoes continued morphological alterations; however, the biomolecular and transcriptional dynamics of the postnatal thymus in avian species is not clear yet. Therefore, the thymuses from chickens at different stages of development (at weeks 0, 1, 5, 9, 18, and 27) were used in the present study. The RNA-seq method was used to study the gene expression patterns. On average, 24120819 clean reads were mapped, differentially expressed genes (DEGs) were identified on the basis of log values (fold change), including 744 upregulated and 425 downregulated genes. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are PCNA, CCNA2, CCNB2, and CDK1. Thus, the current study revealed that during postnatal development, the thymus undergoes severe atrophy. Thymus structure was damaged and gene expression changed dramatically, especially at the 27th week of age. Moreover, we found significant changes of several signaling pathways such as the cytokine-cytokine receptor interaction and cell cycle signaling pathways. Hence, it may be inferred that those signaling pathways might be closely related to the postnatal chicken thymus development.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Zhu Zhuo ◽  
Susan J. Lamont ◽  
Behnam Abasht

The superior performance of hybrids to parents, termed heterosis, has been widely utilized in animal and plant breeding programs, but the molecular mechanism underlying heterosis remains an enigma. RNA-Seq provides a novel way to investigate heterosis at the transcriptome-wide level, because gene expression functions as an intermediate phenotype that contributes to observable traits. Here we compared embryonic gene expression between chicken hybrids and their inbred parental lines to identify inheritance patterns of gene expression. Inbred Fayoumi and Leghorn were crossed reciprocally to obtain F1 fertile eggs. RNA-Seq was carried out using 24 brain and liver samples taken from day 12 embryos, and the differentially expressed (DE) genes were identified by pairwise comparison among the hybrids, parental lines, and mid-parent expression values. Our results indicated the expression levels of the majority of the genes in the F1 cross are not significantly different from the mid-parental values, suggesting additivity as the predominant gene expression pattern in the F1. The second and third prevalent gene expression patterns are dominance and over-dominance. Additionally, we found only 7–20% of the DE genes exhibit allele-specific expression in the F1, suggesting that trans regulation is the main driver for differential gene expression and thus contributes to heterosis effect in the F1 crosses.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation remains unclear. Results We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating that gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, implying tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explains why knockdown of CTCF leads to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found that cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2020 ◽  
Author(s):  
Afshan F. Nawas ◽  
Mohammed Kanchwala ◽  
Shayna E. Thomas-Jardin ◽  
Haley Dahl ◽  
Kelly Daescu ◽  
...  

Abstract Background: Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR- BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR- BCa and PCa cells to promote HR-independent survival and tumorigenicity. Methods: We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR- BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. Results: We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR- cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR- BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR- cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR- cell lines. Conclusions: Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.


2019 ◽  
Author(s):  
Afshan F. Nawas ◽  
Mohammed Kanchwala ◽  
Shayna E. Thomas-Jardin ◽  
Haley Dahl ◽  
Kelly Daescu ◽  
...  

Abstract Background: Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly blocks HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ER𝛼 and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR- BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR- BCa and PCa cells to promote HR-independent survival and tumorigenicity.Methods: We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR- BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in HR- BCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) to identify signaling pathways encoded by our RNA-seq data set.Results: We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR- cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR- BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired treatment resistance. We also assessed HR- cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR- cell lines. Conclusions: Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.


Sign in / Sign up

Export Citation Format

Share Document