scholarly journals Natural and Anthropogenic Conditions of the Chemical Composition of Pit Lake Waters (Based on Example Pit Lakes from Central Europe)

2020 ◽  
Vol 39 (3) ◽  
pp. 473-480
Author(s):  
Tadeusz Molenda ◽  
Joanna Kidawa
2015 ◽  
Vol 41 (3) ◽  
pp. 60-69 ◽  
Author(s):  
Sylwia Lutyńska ◽  
Krzysztof Labus

Abstract Exploitation of lignite within the area of Muskau Arch, carried out from the mid-nineteenth century, contributed to the transformation of the natural environment and changes in water regime. In the post-mining subsidences pit lakes were formed. The chemical composition of waters is a consequence of the intensive weathering of pyrite (FeS2), which is present in Miocene lignite-bearing rock forming the embankments of the lakes. This process leads to the formation of Acid Mine Drainage (AMD) and finally acidification of lake waters. This paper presents results of the identification of hydrogeochemical processes affecting the chemistry of waters from these reservoirs carried out using the speciation and statistical (cluster and factor) analyses. Cluster analysis allowed to separate from the analyzed group of anthropogenic reservoirs 7 subgroups characterized by a similar chemical composition of waters. The major processes affecting the chemistry of waters were identified and interpreted with help of factor and speciation analysis of two major parameters (iron and sulfur).


Author(s):  
B. B Amralinova ◽  
O. V Frolova ◽  
I. E Mataibaeva ◽  
B. B Agaliyeva ◽  
S. V Khromykh

Purpose. Study on the chemical composition of lake waters, salt brines, brine and bottom sediments to identify the mineralization of rare metals and other types of minerals. Methodology. Mass spectrometric studies (mass spectrometer with inductively coupled plasma ICP-MS 7500cx from AgilentTechnologies) for the purpose of high-precision analytical studies on the chemical composition of salt lake water in order to assess the content of rare elements. The use of unmanned aerial vehicles for linking and geometrizing lakes. Findings. Field surveys on the geometrization and linking of lakes were carried out. From the materials obtained with the help of the drone, orthophotoplans were created (with a measurement accuracy of up to 1 centimeter), as well as a digital terrain model and a digital terrain model. A complex of analytical works was carried out using inductively coupled plasma spectrometry. When analyzing the distribution graphs of the absolute content of micro-components in the waters of the lakes of the Delbegeteysky massif, it was found that all samples were enriched with sodium, phosphorus, iron, magnesium and barium. The results of the analyses revealed the predominance of sulfates and chlorides in the composition of the surface waters of most of the water bodies of the Delbegeteysky massif. At the Burabai site, lake waters are characterized by an alkaline reaction of the environment (on average = 8.71). At the same time, the salinity of water bodies varies from 05 to 9 g/dm3. Originality. Large-scale outcrops of granites of the Kalba complex (P1), with which a rare-metal type of mineralization is genetically associated, are known to be on the selected study sites. Quartz-wire-greisen and quartz-wire tin, tin-tungsten and tungsten formations are also widely developed. Considering the large geochemical migration ability of rare alkaline elements in the thickness of loose sediments as a result of intensive geodynamic processes in the East Kazakhstan region, it is possible to assume the possibility of their migration to the upper horizons and accumulation in salt lakes localized within the area of development of granite intrusions of Permian age and associated deep tectonic faults. Practical value. The results of the research can serve as a revival of the rare metal industry in the region, which will allow developing new high-tech industries and creating new jobs in this area. The obtained results can be used for setting up further exploration and operational work on the selected promising areas.


2021 ◽  
pp. geochem2021-009
Author(s):  
Lamiae EL ALAOUI ◽  
Abdelilah Dekayir ◽  
Mohammed Rouai ◽  
EL Mehdi Benyassine

In the Zeida abandoned mine, pit lake waters exhibit alkaline pH and high conductivity. The concentrations of the total dissolved lead and zinc are very low due to their adsorption on clay minerals and iron oxyhydroxides. Conversely, arsenic concentrations in two lakes (ZL1 and ZA) exceeded WHO water quality guidelines. The As content is relatively high in ZL1 lake and exists mainly as As(V). In ZA lake, As(III) occurs in low concentration compared to the total dissolved arsenic, while dimethylarsenic acid [H2AsO2(CH3)2, DMA) prevails. This means that arsenic was methylated by organic matter produced by microorganisms such as chlorella. The sequential extraction of floor sediments in two lakes shows that the bioavailable arsenic contents change between the two lakes. In ZA lake, the sediments show high concentrations of lead and arsenic compared to ZL1 sediment since it is surrounded by mining waste tailings, which are rich in such chemical elements. An arsenic leaching test of ZA sediment shows that bioavailable arsenic is distributed in equal proportion between clay/carbonates, sulfide-organic matter, and iron oxides (HFO) phases, while in ZL1, most of the arsenic is linked to hydrous iron oxides (HFO).Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issuesSupplementary material:https://doi.org/10.6084/m9.figshare.c.5545316


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 133 ◽  
Author(s):  
Cherie McCullough ◽  
Martin Schultze ◽  
Jerry Vandenberg

Pit lakes can represent significant liabilities at mine closure. However, depending upon certain characteristics of which water quality is key, pit lakes often also present opportunities to provide significant regional benefit and address residual closure risks of both their own and overall project closure and even offset the environmental costs of mining by creating new end uses. These opportunities are widely dependent on water quality, slope stability, and safety issues. Unfortunately, many pit lakes have continued to be abandoned without repurposing for an end use. We reviewed published pit lake repurposing case studies of abandoned mine pit lakes. Beneficial end use type and outcome varied depending upon climate and commodity, but equally important were social and political dynamics that manifest as mining company commitments or regulatory requirements. Many end uses have been realized: passive and active recreation, nature conservation, fishery and aquaculture, drinking and industrial water storage, greenhouse carbon fixation, flood protection and waterway remediation, disposal of mine and other waste, mine water treatment and containment, and education and research. Common attributes and reasons that led to successful repurposing of abandoned pit lakes as beneficial end uses are discussed. Recommendations are given for all stages of mine closure planning to prevent pit lake abandonment and to achieve successful pit lake closure with beneficial end uses.


2019 ◽  
Vol 39 (3) ◽  
pp. 589-602 ◽  
Author(s):  
Melanie L. Blanchette ◽  
Richard Allcock ◽  
Jahir Gonzalez ◽  
Nina Kresoje ◽  
Mark Lund

Abstract The broad objective of this research was to determine the environmental drivers of macroinvertebrate and microbial assemblages in acidic pit lakes. This is important because pit lake ecosystem development is influenced by prevailing environmental characteristics. Three lakes (Stockton, Kepwari, WO5H) within a larger pit-lake district in Collie, Western Australia were surveyed for spatial variability of benthic macroinvertebrate and microbe (Archaea, Bacteria) assemblage composition as well as potential environmental drivers (riparian condition, aquatic habitat, sediments, and aquatic chemistry) of assemblages. With the exception of sediment chemistry, biophysical variables were significantly different across lakes and reflected riparian condition and groundwater chemistry. Microbial assemblages in pit lakes were significantly different across lakes and correlated with water chemistry, particularly metals in Lake WO5H. However, the most abundant microbes were not readily identified beyond class, making it difficult to speculate on their ecological function. Macroinvertebrate assemblage composition and species richness were also significantly different across all lakes, and in Lake WO5H (a lake with low pH and high metal concentrations), taxa were correlated with benthic organic matter as well as water chemistry. Results indicated that despite poor water quality, input of nutrients from terrestrial leaf litter can support or augment pit lake ecosystems. This is a demonstration of the concept that connection of pit lakes to catchments can positively affect aquatic ecosystems, which can inform management actions for remediation.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1001
Author(s):  
Zuzana Zlámalová Cílová ◽  
Michal Gelnar ◽  
Simona Randáková

The study deals with the development of the chemical composition of blue glass from the 13th to the 19th century in the region of Bohemia (Central Europe). Nearly 100 glass samples (colourless, greenish, and blue) were evaluated by an XRF method to distinguish the colouring components of blue glass. As early as in the 13th century, blue glass based on ash containing colouring ions of Co and Cu was produced here. To achieve the blue colour of glass, a copper-rich raw material was most likely applied. This information significantly complements the existing knowledge about glass colouring in the Middle Ages, as the glass of later periods was typically coloured with raw materials containing cobalt.


2022 ◽  
Vol 5 (1) ◽  
pp. 92
Author(s):  
Michael Galetakis ◽  
Vassilios Deligiorgis ◽  
Emmanuel Steiakakis ◽  
Stella Raka ◽  
Marwan Alheib

In this study we present a generic probabilistic risk assessment methodology to evaluate the risk associated with flooding process of a pit. We use the bow-tie analysis to analyze the critical events (we focus on slope failures) and the systemic risk assessment methodology to estimate the risk for the population, for the environment and for the infrastructure. Furthermore, we perform a spatial analysis of the risk by discretizing the affected area into squares, by estimating the risk in each one and finally by creating the risk map. The methodology is implemented by specialized software that has been created in a Matlab environment for the deduction of such risk assessments. The developed methodology was applied in the area of the pit lake Most in Czech Republic.


2011 ◽  
Vol 34 (3) ◽  
pp. 187-194 ◽  
Author(s):  
OTAKAR ROP ◽  
TUNDE JURIKOVA ◽  
JIRI SOCHOR ◽  
JIRI MLCEK ◽  
DANIELA KRAMAROVA

Sign in / Sign up

Export Citation Format

Share Document