Ectopic expression of a poplar gene NAC13 confers enhanced tolerance to salinity stress in transgenic Nicotiana tabacum

2020 ◽  
Vol 133 (5) ◽  
pp. 727-737
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Kai Zhao ◽  
Boru Zhou ◽  
Tingbo Jiang
2021 ◽  
Vol 13 (8) ◽  
pp. 4547
Author(s):  
Mohamed E. El-Sharnouby ◽  
Metwally M. Montaser ◽  
Sliai M. Abdallah

The flower industry depends on oil and fragrance, which is addressed in the current work. Different concentrations of NaCl (0, 250, 500, 1000, and 1500 ppm) were applied to Taif rose plants (Rosa damascena var. trigintipetala Dieck) to evaluate their effects on growth and essential oil content. Results clearly indicated the highest survival percentage (98.3%) was seen in untreated plants compared to plants under salinity stress. Moreover, increasing the NaCl levels induced an adverse effect on the growth parameters of Taif rose plants, while some essential oil contents were increased to the maximum degree of their tolerance to salinity stress. The extracted essential oils were analyzed using GC/MS. The essential oils of Taif rose plants treated with 500 ppm NaCl recorded the highest values of citronellol, geraniol and phenylethyl alcohol contents (16.56, 8.67 and 9.87%), respectively. NaCl at 250 ppm produced the highest values of heneicosane (13.12%), and then decreased to the lowest value (7.79%) with the increase of NaCl to 1500 NaCl, compared to the control and other NaCl levels. The current results could highlight the impact of salinity stress on Rosa damascena Miller var. trigintipetala Dieck for better economic and industrial applications.


2006 ◽  
Vol 26 (3) ◽  
pp. 291-301 ◽  
Author(s):  
Jiqiang Yao ◽  
Bethany Huot ◽  
Catherine Foune ◽  
Harshavardhan Doddapaneni ◽  
Alexander Enyedi

2016 ◽  
Vol 25 (4) ◽  
pp. 517-526 ◽  
Author(s):  
Congyue Annie Peng ◽  
Julia Russo ◽  
Charlene Gravgaard ◽  
Heather McCartney ◽  
William Gaines ◽  
...  

2021 ◽  
Author(s):  
Kota Vamsee Raja ◽  
Kalva Madhanasekhar ◽  
Vudem Dashavantha Reddy ◽  
Attipalli Ramachandra Reddy ◽  
Khareedu Venkateswara Rao

AbstractWorld-wide crop productivity is hugely impacted by diverse eco-environmental conditions. In the present investigation, activation tagged (AT) lines of rice endowed with improved agronomic attributes have been analyzed for tolerance to salinity stress besides identification of genes associated with these attributes. Under salinity stress conditions, AT lines exhibited increased seed germination rates, improved plant growth and development at vegetative and reproductive stages as compared to wild-type (WT) plants. Furthermore, AT lines disclosed enhanced plant water content, photosynthetic efficiency, stomatal conductance, water use efficiency and maximum quantum yield when compared to WT plants, leading to improved yields and delayed onset of stress symptoms. Moreover, AT lines revealed effective antioxidant systems causing decreased accumulation of reactive oxygen species and delayed salinity stress symptoms compared to WT plants. Reduced accumulation of malondialdehyde with concomitant increases in proline and soluble sugars of AT lines further endorsing their improved stress tolerance levels. TAIL and qRT-PCR analyses of AT lines revealed Ds element integrations at different loci and respective overexpression of identified candidate genes involved in various aspects of plant development and stress tolerance. Accordingly, the AT lines plausibly serve as a rare genetic resource for fortifying stress tolerance and productivity traits of elite rice cultivars.HighlightActivation tagged lines of rice endowed with improved agronomic attributes have been analyzed for tolerance to salinity stress besides identification and expression analysis of genes associated with these attributes.


2015 ◽  
Vol 28 (11) ◽  
pp. 1216-1226 ◽  
Author(s):  
You Lu ◽  
Noriyuki Hatsugai ◽  
Fumiaki Katagiri ◽  
Carol A. Ishimaru ◽  
Jane Glazebrook

Clavibacter michiganensis subspp. michiganensis and sepedonicus cause diseases on solanaceous crops. The genomes of both subspecies encode members of the pat-1 family of putative serine proteases known to function in virulence on host plants and induction of hypersensitive responses (HR) on nonhosts. One gene of this family in C. michiganensis subsp. sepedonicus, chp-7, is required for triggering HR in Nicotiana tabacum. Here, further investigation revealed that mutation of the putative catalytic serine residue at position 232 to threonine abolished the HR induction activity of Chp-7, suggesting that enzymatic activity is required. Purified Chp-7 triggered an HR in N. tabacum leaves in the absence of the pathogen, indicating Chp-7 itself is the HR elicitor from C. michiganensis subsp. sepedonicus. Ectopic expression of chp-7 constructs in N. tabacum leaves revealed that Chp-7 targeted to the apoplast triggered an HR while cytoplasmic Chp-7 did not, indicating that Chp-7 induces the HR in the apoplast of N. tabacum leaves. Chp-7 also induced HR in N. sylvestris, a progenitor of N. tabacum, but not in other Nicotiana species tested. ChpG, a related protein from C. michiganensis subsp. michiganensis, also triggered HR in N. tabacum and N. sylvestris. Unlike Chp-7, ChpG triggered HR in N. clevelandii and N. glutinosa.


2004 ◽  
Vol 163 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Marcel A. K. Jansen ◽  
Malin Elfstrand ◽  
Laura Heggie ◽  
Folke Sitbon ◽  
Philip J. Dix ◽  
...  

3 Biotech ◽  
2018 ◽  
Vol 8 (6) ◽  
Author(s):  
Rim Mzid ◽  
Walid Zorrig ◽  
Rayda Ben Ayed ◽  
Karim Ben Hamed ◽  
Mariem Ayadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document