Effects of growth temperature and nitrogen nutrition on expression of C3–C4 intermediate traits in Chenopodium album

Author(s):  
Jemin Oono ◽  
Yuto Hatakeyama ◽  
Takayuki Yabiku ◽  
Osamu Ueno
1996 ◽  
Vol 23 (4) ◽  
pp. 467 ◽  
Author(s):  
J Santrucek ◽  
RF Sage

Acclimation of stomatal conductance to different CO2 and temperature regimes was determined in Chenopodium album L. plants grown at one of three treatment conditions: 23�C and 350 μmol CO2 mol-1 air; 34�C and 350 μmol mol-1; and 34�C and 750 μmol mol-1. Stomatal conductance (gs) as a function of intercellular CO2 (Ci) was determined for each treatment at 25 and 35�C, and these data were used to estimate gains of the feedback loops linking changes in intercellular CO2 with stomatal conductance and net CO2 assimilation. Growth temperature affected the sensitivity of stomata to measurement temperature in a pattern that was influenced by intercellular CO2. Stomatal conductance more than doubled at intercellular CO2 varying between 200 and 600 μmol mol-1 as leaf temperature increased from 25 to 35�C for plants grown at 23�C. In contrast, stomatal conductance was almost unaffected by measurement temperature in plants grown at 34�C. Elevated growth CO2 attenuated the response of stomatal conductance to CO2, but growth temperature did not. Stomatal sensitivity to Ci was extended to higher Ci in plants grown in elevated CO2. As a result, plants grown at 750 μmol mol-1 CO2 had higher Ci/Ca at ambient CO2 values between 300 and 1200 �mol mol-1 than plants grown at 350 �mol mol-1 CO2. The gain of the stomatal loop was reduced in plants grown at elevated CO2 or at lower temperature when compared to plants grown at 350 μmol mol-1 and 34°C. Both photosynthetic and stomatal loop gains acclimated to elevated CO2 in proportion so that their ratio, integrated over the range of Ci in which the plant operates, remained constant. Water use efficiency (WUE) more than doubled after a short-term doubling of ambient CO2. However, the WUE of plant grown and measured at elevated CO2 was only about 1.5 times that of plant transiently exposed to elevated CO2, due to stomatal acclimation. An optimal strategy of water use was maintained for all growth treatments.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


2018 ◽  
Vol 17 (6) ◽  
pp. 159-166
Author(s):  
Halina Kurzawińska ◽  
Stanisław Mazur ◽  
Małgorzata Nadziakiewicz ◽  
Jacek Nawrocki

The aim of this study was to determine whether the weeds accompanying potato crops can be a source of Alternaria spp. causing Alternaria leaf blight and to determine the genetic similarities of Alternaria alternata isolates infecting selected weeds: Chenopodium album, Cirsium arvense and tested potato cultivar. Three-year field experiment was conducted on the potato cultivar ‘Vineta N’. The isolates were classified into different species on the basis of macro- and microscopic features. In each year of the study, A. alternata dominated among the isolated fungi colonizing the leaves of potato plants and the selected weeds. The genetic similarities of A. alternata isolates was determined by the RAPD-PCR method. Tested genetic forms of A. alternata were closely related; only small differences in the pattern of the separated amplification products was evidenced. The dominance of A. alternata on the weeds accompanying potato crops suggests that if weed infestation is extensive, the pathogen is very likely to spread and its population to increase.


The article presents the results of a vegetation experiment on studying an effect of increasing doses of nitrogen (factor С - N0; No.o5; No.io; N015; No.2o; N0,25 g/kg of absolutely dry soil) and pre-sowing inoculation of seeds with biological preparation "Risotorphine" (factor В - no inoculation; by inoculation) on the formation of vegetative mass and grain yield ofpeas at cultivating in the conditions of a poorly cultivated (factor A0) and of a medium cultivated (factor A f sod-podzolic soil. Cultivation degree of soil was expressed by such criteria as power of an arable horizon, value of metabolic acidity and content of mobile phosphorus, a degree of saturation of soil with bases. For experience tab there were used Mitscher-lich cups with a capacity of 5 kg of absolutely dry soil (a.d.s.), in 16 repetitions of options. The experiments were conducted in the conditions of vegetation site on the territory of University Scientific Centre "Lipogorie" of FSBEI Perm GATA, guided by a science-based methodology. When harvesting peas for a green mass more intensive development and productivity of plants (23.3 and 58.9, 40.0, 78.8 g/cup, respectively) in the phase of stem branching and budding a beginning offlowering that is recorded for its use on the background of inoculation, usage of mineral nitrogen in a dose of 0.10 g/kg on a poorly cultivated soil and 0.15 g/kg a.d.s. on a medium cultivated soil. Applying of higher doses of nitrogen has a depressing effect on development of assimilating surface of pea plants on a poorly and a medium cultivated soil. When raising pea plants before harvest maturity of grain: in the conditions of a poorly cultivated soil for yield at the level of 7.92 g/cup, the process of carrying on only an inoculation of seed with microbial preparation "Rizotorfin" can be considered; in the medium cultivated soil varieties, plant peas impose higher requirements for the level of mineral nutrition the maximum yield in the experiment (which 9.22 g/cup), noted at a combined use of inoculation and mineral nitrogen in a dose of 0.20 g/kg a.d.s.


Sign in / Sign up

Export Citation Format

Share Document