scholarly journals Green Hydrogen in Europe: Do Strategies Meet Expectations?

2021 ◽  
Vol 56 (6) ◽  
pp. 316-323
Author(s):  
André Wolf ◽  
Nils Zander

AbstractAgainst the backdrop of the EU’s more ambitious climate targets, the technology of green hydrogen production has gained increasing importance in national plans to implement the energy transition.

2021 ◽  
Author(s):  
Peter Adam

Abstract Hydrogen holds enormous potential in helping the world achieve its decarbonization goals and is set to play a key role in the Energy Transition. However, two central building blocks are needed to make the hydrogen economy a reality: 1) a sufficient source of emissions-free (i.e., blue or green) hydrogen production and 2) a needs-based transportation and storage network that can reliably and cost-effectively supply hydrogen to end-users. Given the high costs associated with developing new transportation infrastructure, many governments, pipeline operators, and regulatory bodies have begun exploring if it is both possible and economical to convert existing natural gas (i.e., methane) infrastructure for hydrogen operation. This paper outlines opportunities and technical challenges associated with such an endeavor – with a particular focus on adaptation requirements for rotating equipment/compressor drive trains and metallurgical and integrity considerations for pipelines.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8331
Author(s):  
Maryna Hritsyshyna ◽  
Nataliia Hutarevych

In August 2020, Germany and Ukraine launched an energy partnership that includes the development of a hydrogen economy. Ukraine has vast renewable energy resources for “green” hydrogen production and a gas transmission system for transportation instead of Russian natural gas. Based on estimates by Hydrogen Europe, Ukraine can install 8000 MW of total electrolyser capacity by 2030. For these reasons, Ukraine is among the EU’s priority partners concerning clean hydrogen, according to the EU Hydrogen strategy. Germany plans to reach climate neutrality by 2045, and “green” hydrogen plays an important role in achieving this target. However, according to the National Hydrogen Strategy of Germany, local production of “green” hydrogen will not cover all internal demand in Germany. For this reason, Germany considers importing hydrogen from Ukraine. To govern the production and import of “green” hydrogen, Germany and Ukraine shall introduce legal regulations, the initial analysis of which is covered in this study. Based on observation and comparison, this paper presents and compares approaches while exploring the current stage and further perspectives for legal regulation of hydrogen in Germany and Ukraine. This research identifies opportunities in hydrogen production to improve the flexibility of the Ukrainian power system. This is an important issue for Ukrainian energy security. In the meantime, hydrogen can be a driver for decarbonisation according to the initial plans of Germany, and it may also have positive impact on the operation of Germany’s energy system with a high share of renewables.


2022 ◽  
Vol 334 ◽  
pp. 01005
Author(s):  
Simona Di Micco ◽  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Elio Jannelli

Today, the hydrogen is considered an essential element in speeding up the energy transition and generate important environmental benefits. Not all hydrogen is the same, though. The “green hydrogen”, which is produced using renewable energy and electrolysis to split water, is really and completely sustainable for stationary and mobile applications. This paper is focused on the techno-economic analysis of an on-site hydrogen refueling station (HRS) in which the green hydrogen production is assured by a PV plant that supplies electricity to an alkaline electrolyzer. The hydrogen is stored in low pressure tanks (200 bar) and then is compressed at 900 bar for refueling FCHVs by using the innovative technology of the ionic compressor. From technical point of view, the components of the HRS have been sized for assuring a maximum capacity of 450 kg/day. In particular, the PV plant (installed in the south of Italy) has a size of 8MWp and supplies an alkaline electrolyzer of 2.1 MW. A Li-ion battery system (size 3.5 MWh) is used to store the electricity surplus and the grid-connection of the PV plant allows to export the electricity excess that cannot be stored in the battery system. The economic analysis has been performed by estimating the levelized cost of hydrogen (LCOH) that is an important economic indicator based on the evaluation of investment, operational & maintenance and replacement costs. Results highlighted that the proposed on-site configuration in which the green hydrogen production is assured, is characterized by a LCOH of 10.71 €/kg.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7170
Author(s):  
Eleftherios Touloupakis ◽  
Cecilia Faraloni ◽  
Ana Margarita Silva Benavides ◽  
Giuseppe Torzillo

It is well known that over the last 60 years the trend of long-lived greenhouse gas emissions have shown a strong acceleration. There is an increasing concern and a mounting opposition by public opinion to continue with the use of fossil energy. Western countries are presently involved in a so-called energy transition with the objective of abandoning fossil energy for renewable sources. In this connection, hydrogen can play a central role. One of the sustainable ways to produce hydrogen is the use of microalgae which possess two important natural catalysts: photosystem II and hydrogenase, used to split water and to combine protons and electrons to generate gaseous hydrogen, respectively. For about 20 years of study on photobiological hydrogen production, our scientific hopes were based on the application of the sulfur protocol, which indisputably represented a very important advancement in the field of hydrogen production biotechnology. However, as reported in this review, there is increasing evidence that this strategy is not economically viable. Therefore, a change of paradigm for the photobiological production of hydrogen based on microalgae seems mandatory. This review points out that an increasing number of microalgal strains other than Chlamydomonas reinhardtii are being tested and are able to produce sustainable amount of hydrogen without nutrient starvation and to fulfill this goal including the application of co-cultures.


Significance Policy responses to the global recession have the potential either to accelerate or retard the energy transition. Economic and social behavioural change as a result of forced learning during lockdowns and continued social distancing may prove permanent. Impacts The fiscal stimuli to ease COVID-19 impacts will expand the role of the state in major economies; this may aid meeting climate targets. Renewable energy will continue increasing its share of electricity generation as planned projects come online and costs fall. The IEA sees energy sector investment plunging by 20% this year; many energy firms may struggle to survive.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 718
Author(s):  
Alexandra Kopteva ◽  
Leonid Kalimullin ◽  
Pavel Tcvetkov ◽  
Amilcar Soares

Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today, we face the problem of further scaling up renewable energy infrastructure, which requires the creation of reliable energy storages, environmentally friendly carriers, like hydrogen, and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition, which is questionable in terms of economic efficiency, compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries, this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends, (2) presenting strategic scenarios for the Russian energy sector development, (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support, the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market, economic efficiency is on the edge of zero, with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg), which is only a bit higher than its production cost ($12.5/kg), while transportation requires about $0.96/kg more. Despite the discouraging results, it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen, which could be competitive in the medium term, especially with state support.


2020 ◽  
Vol 12 (24) ◽  
pp. 10560 ◽  
Author(s):  
Han Phoumin ◽  
Fukunari Kimura ◽  
Jun Arima

The power generation mix of the Association of Southeast Asian Nations (ASEAN) is dominated by fossil fuels, which accounted for almost 80% in 2017 and are expected to account for 82% in 2050 if the region does not transition to cleaner energy systems. Solar and wind power are the most abundant energy resources but contribute negligibly to the power mix. Investors in solar or wind farms face high risks from electricity curtailment if surplus electricity is not used. Employing the policy scenario analysis of the energy outlook modelling results, this paper examines the potential scalability of renewable hydrogen production from curtailed electricity in scenarios of high share of variable renewable energy in the power generation mix. The study found that ASEAN has high potential in developing renewable hydrogen production from curtailed electricity. The study further found that the falling cost of renewable hydrogen production could be a game changer to upscaling the large-scale hydrogen production in ASEAN through policy support. The results implied a future role of renewable hydrogen in energy transition to decarbonize ASEAN’s emissions.


Sign in / Sign up

Export Citation Format

Share Document