Biological control of grapevine crown gall by nonpathogenic Agrobacterium vitis strain VAR03-1

2007 ◽  
Vol 73 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Akira Kawaguchi ◽  
Koji Inoue ◽  
Hideo Nasu
Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 957-963 ◽  
Author(s):  
F. Chen ◽  
Y. B. Guo ◽  
J. H. Wang ◽  
J. Y. Li ◽  
H. M. Wang

Crown gall induced by Agrobacterium vitis is a worldwide plant disease in grape-growing regions. Rahnella aquatilis HX2, a new isolate from vineyard soil in Beijing, showed a significant inhibition effect on the development of crown galls in grapevines. In field trials, immersion of the basal ends of grape cuttings with HX2 cell suspension inhibited or completely prevented crown gall formation caused by A. vitis K308 in the roots of the plants from the cuttings. The 3-year average disease incidence in grape plants treated with HX2 was 30.8% compared to 93.5% in plants without HX2. The culture supernatant of HX2 exhibited a stronger inhibition effect on disease development than did the cell suspension. HX2 could be found in the grape rhizosphere, grown under field conditions, for up to 90 days after inoculation. There was no significant difference in the mean population sizes of root microflora between plants treated and not treated with HX2. The inhibition effect of HX2 on crown gall in sunflower, caused by different agrobacterial strains, varied between 30.7 and 100%, depending on strains. Our results showed that Rahnella aquatilis HX2 may be used as a biological control agent for crown gall disease of grapes.


2012 ◽  
Vol 64 (1) ◽  
pp. 1-14 ◽  
Author(s):  
A. Filo ◽  
P. Sabbatini ◽  
G. W. Sundin ◽  
T. J. Zabadal ◽  
G. R. Safe ◽  
...  

2009 ◽  
Vol 75 (21) ◽  
pp. 6792-6803 ◽  
Author(s):  
Yan Bin Guo ◽  
Jinyun Li ◽  
Lei Li ◽  
Fan Chen ◽  
Wenliang Wu ◽  
...  

ABSTRACT Rahnella aquatilis HX2, a biocontrol agent for grapevine crown gall caused by Agrobacterium vitis, produces an antibacterial substance that inhibits the growth of A. vitis in vitro. In this study, we show that MH15 and MH16, two Tn5-induced mutants of HX2, have lost their abilities to inhibit A. vitis and have reduced biocontrol activities; they grow in logarithmic phase at a rate similar to that of the wild type and have single Tn5 insertions. They are also impaired in producing pyrroloquinoline quinone (PQQ) or glucose dehydrogenase (GDH). Complementation of MH15 and MH16 with cosmid clones of CP465 and CP104 from an HX2 DNA library restored the antibiosis, biocontrol, and PQQ or GDH production phenotypes. A 6.7-kb BamHI fragment from CP465 that fully restored the MH15-affected phenotypes was cloned and sequenced. Sequence analysis of the mutated DNA region resulted in the identification of seven open reading frames (ORFs), six of which share significant homology with PQQ-synthesizing genes in other bacteria, designated pqqA through pqqF. Meanwhile, A 5.5-kb PstI fragment from CP104 fully complemented the MH16 mutant and contained a single ORF highly similar to that of genes coding for GDHs. An in-frame gdh deletion mutant has the same phenotypes as the Tn5 mutant of MH16. Complementation of both deletion and Tn5 gdh mutants restored the affected phenotypes to wild-type levels. Our results suggest that an antibacterial substance plays a role in biocontrol of A. vitis by HX2.


2017 ◽  
Vol 93 (9) ◽  
pp. 755-755
Author(s):  
Akira KAWAGUCHI ◽  
Koji INOUE ◽  
Koji TANINA ◽  
Mizuho NITA

Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 286-286 ◽  
Author(s):  
N. Kuzmanović ◽  
A. Ćalić ◽  
M. Ivanović ◽  
K. Gašić ◽  
J. Pulawska ◽  
...  

In November 2010, a serious outbreak of crown gall disease was observed on 3-year-old grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon grafted onto Kober 5BB rootstock in two commercial vineyards located in the South Banat District in Serbia. Large, aerial tumors were visible above the grafting point on grapevine trunks, and in most cases, the tumors completely girdled the trunk. From the gall tissues, white, circular, and glistening bacterial colonies were isolated on yeast mannitol agar medium. Eight, nonfluorescent, gram-negative, and oxidase-positive strains were isolated from seven tumor samples and selected for further identification. PCR assays with A/C′ (1) and VCF3/VCR3 (4) primers corresponding to the virD2 and virC genes yielded 224- and 414-bp fragments, respectively, confirming that the strains harbored the plasmid responsible for pathogenicity. The strains were differentiated to the species/biovar level with a multiplex PCR assay targeting 23S rRNA gene sequences (3) and were identified as Agrobacterium vitis. The 16S rDNA gene sequence from one isolate (GenBank Accession No. JN185718) showed 99% identity to the sequences of A. vitis previously deposited in NCBI GenBank database. The physiological and biochemical test results corresponded to the results of genetic analysis (2). The strains grew at 35°C and in nutrient broth supplemented with 2% NaCl. They were negative in 3-ketolactose, acid clearing on PDA supplemented with CaCO3, and ferric ammonium citrate tests; nonmotile at pH 7.0; pectolytic at pH 4.5; utilized citrate; produced acid from sucrose and alkali from tartarate. Pathogenicity was confirmed by inoculation of three plants per bacterial strain on grapevine cv. Cabernet Franc and on a local cultivar of tomato (Lycopersicon esculentum L.). The plants were inoculated on the stem by pricking one to three times through a drop of inoculum (108 CFU/ml) at three inoculation sites. Sterile distilled water was used as a negative control. Inoculated plants were maintained in a greenhouse at 24 ± 3°C. Typical tumors developed at the inoculation sites on tomatoes 3 weeks after inoculation and on grapevine 6 weeks after inoculation. No symptoms were observed on the control plants. Bacteria were reisolated from tumorigenic tissues and identified as pathogenic A. vitis by PCR. Crown gall disease was sporadically observed in vineyards in Serbia in previous years, but did not cause significant damage. Therefore, the causal agent was not studied in detail. To our knowledge, this is the first report of A. vitis determined as the causal agent of grapevine crown gall in Serbia. References: (1) J. H. Haas et al. Appl. Environ. Microbiol. 61:2879, 1995. (2) L. W. Moore et al. Page 17 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al., eds. The American Phytopathological Society, St. Paul, MN, 2001. (3) J. Pulawska et al. Syst. Appl. Microbiol. 29:470, 2006. (4) K. Suzaki et al. J. Gen. Plant Pathol. 70:342, 2004.


2005 ◽  
Vol 95 (4) ◽  
pp. 362-367 ◽  
Author(s):  
J. E. Creasap ◽  
C. L. Reid ◽  
M. C. Goffinet ◽  
R. Aloni ◽  
C. Ullrich ◽  
...  

Agrobacterium vitis is the causal agent of crown gall disease in grapevine, which can be severe in many regions worldwide. Vitis vinifera cultivars are highly susceptible to freeze injury, providing the wounds necessary for infection by A. vitis. Wound position in relation to the uppermost bud of cuttings was determined to be important in tumor development. Inoculated wounds below buds developed tumors, whereas wounds opposite the bud did not, implying that indole-3-aectic acid flow contributes to tumor formation. If auxin was applied to wounds prior to inoculation with a tumorigenic A. vitis strain, all sites of inoculation developed tumors, accompanied by an increased amount of callus in the cambium. Wounds inoculated with an A. vitis biological control strain F2/5 prior to application of the pathogen did not develop galls. A closer examination of these wounds determined that callus cells formed in the cambium during wound healing are susceptible to transformation by the pathogen. Although the mechanism by which F2/5 prevents transformation is unknown, our observations suggest that F2/5 inhibits normal wound healing by inducing necrosis in the cambium.


Sign in / Sign up

Export Citation Format

Share Document