allorhizobium vitis
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1265
Author(s):  
Akira Kawaguchi ◽  
Teruo Sone ◽  
Sunao Ochi ◽  
Yosuke Matsushita ◽  
Yoshiteru Noutoshi ◽  
...  

Crown gall is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of grapevine crown gall is tumorigenic Allorhizobium vitis (Ti) strains that harbor a tumor-inducing plasmid (pTi). The epidemic of grapevine crown gall has not been widely elucidated. In this study, we investigated the genetic diversity of 89 strains of Ti and nonpathogenic A. vitis to clarify their molecular epidemiology. Multi-locus sequence analysis (MLSA) of the partial nucleotide sequences of pyrG, recA, and rpoD was performed for molecular typing of A. vitis strains isolated from grapevines with crown gall symptoms grown in 30 different vineyards, five different countries, mainly in Japan, and seven genomic groups A to F were obtained. The results of MLSA and logistic regression indicated that the population of genetic group A was significantly related to a range of prefectures and that the epidemic of group A strains originated mainly in Hokkaido in Japan through soil infection. Moreover, group E strains could have been transported by infected nursery stocks. In conclusion, this study indicates that both soil infection and transporting of infected nursery stocks are working as infection source in Hokkaido.


Author(s):  
Hangwei Xi ◽  
Joshua Grist ◽  
Maarten Ryder ◽  
Iain Searle

Crown gall disease in grapevine is caused by pathogenic strains of Allorhizobium vitis. A. vitis strain F2/5 is a non-pathogenic biocontrol agent that was previously shown to act as a biological control agent to crown gall disease and first isolated from South Africa. Here, we present the complete assembled genome and is 5.94 Mb in length with 5,414 predicted protein-coding sequences, has two circular chromosomes and five plasmids. The genome sequence has no detectable T-DNA border sequences and is missing key virulence genes which is consistent with the bacteria being non-pathogenic. The F2/5 genome sequence could contribute to understanding the molecular basis underlying the biocontrol activity.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Hangwei Xi ◽  
Maarten Ryder ◽  
Iain R. Searle

Here, we report the annotated, near-complete genome sequence of Allorhizobium vitis K377, a phytopathogenic Rhizobiales strain isolated from a grapevine in South Australia. The assembled genome sequence is 6.40 Mb long, with 5,855 predicted protein-coding sequences, 56 tRNAs, and 12 rRNAs, and contains ttuC (tartrate metabolism; chromosomal) and nopaline synthesis, uptake, and catabolic genes (tumor-inducing plasmid-encoded).


2020 ◽  
Author(s):  
Nemanja Kuzmanović ◽  
Enrico Biondi ◽  
Jörg Overmann ◽  
Joanna Puławska ◽  
Susanne Verbarg ◽  
...  

AbstractAllorhizobium vitis (formerly named Agrobacterium vitis or Agrobacterium biovar 3) is the primary causative agent of crown gall disease of grapevine worldwide. Whole-genome sequence comparisons and phylogenomic analysis of various All. vitis strains clearly indicated that All. vitis is not a single species, but represents a species complex composed of at least four genomic species. Thus, we amended the description of All. vitis which now refers to a restricted group of strains within the All. vitis complex (i.e. All. vitis sensu stricto) and proposed a description of a novel species All. ampelinum sp. nov. The type strain of All. vitis sensu stricto remains the existing type strain of All. vitis, K309T (= NCPPB 3554T =HAMBI 1817T = ATCC 49767T = CIP 105853T = ICMP 10752T = IFO 15140T = JCM 21033T = LMG 8750T = NBRC 15140T). The type strain of All. ampelinum sp. nov. is S4T (= DSM 112012T = ATCCBAA-846T). This genome-based classification was supported by differentiation of strains based on a MALDI-TOF MS analysis. We also identified gene clusters specific for All. vitis species complex, All. vitis sensu stricto and All. ampelinum, and attempted to predict their function and their role in ecological diversification of these clades, some of which were experimentally validated. Functions of All. vitis species complex-specific genes convergently indicate a role in adaptation to different stresses, including exposure to aromatic compounds. Similarly, All vitis sensu stricto-specific genes also confer the ability to degrade 4-hydroxyphenylacetate and a putative compound related to gentisic acid, while All. ampelinum-specific genes have putative functions related to polyamine metabolism and nickel assimilation. This suggests that these species have differentiated ecologies, each relying on specialized nutrient consumption or toxic compound degradation to adapt to their respective niche. Moreover, our genome-based analysis indicated that Allorhizobium and the “R. aggregatum complex” represent separate genera of the family Rhizobiaceae.


Plant Disease ◽  
2020 ◽  
pp. PDIS-04-20-0732
Author(s):  
Trong Nguyen-Huu ◽  
Jeanne Doré ◽  
Essaïd Aït Barka ◽  
Céline Lavire ◽  
Christophe Clément ◽  
...  

Allorhizobium vitis is the primary causal pathogen of grapevine crown gall disease. Because this endophytic bacterium can survive as a systemic latent (symptomless) infection in grapevine, detecting and monitoring its development in planta is of great importance. In plant bacteria studies, plate counting is routinely used as a simple and reliable method to evaluate the bacterial population level in planta. However, isolation techniques are time-consuming and present some disadvantages such as the risk of contamination and the need for fresh samples for research. In this study, we developed a DNA-based real-time PCR assay that can replace the classical method to monitor the development of Allorhizobium vitis in grapevine plantlets. Primers targeting Allorhizobium vitis chromosomic genes and the virulent tumor-inducing plasmid were validated. The proposed quantitative real-time PCR technique is highly reliable and reproducible to assess Allorhizobium vitis numeration at the earliest stage of infection until tumor development in grapevine plantlets. Moreover, this low-cost technique provides rapid and robust in planta quantification of the pathogen and is suitable for fundamental research to monitor bacterial development over time.


2020 ◽  
Vol 9 (29) ◽  
Author(s):  
Hangwei Xi ◽  
Maarten Ryder ◽  
Iain R. Searle

ABSTRACT Here, we present the annotated complete genome sequence of Allorhizobium vitis K306, a phytopathogenic strain causing crown gall of grapevine. The A. vitis K306 genome is 5.79 Mb long with 5,199 predicted protein-coding genes and contains 2 circular chromosomes of 3.8 Mb and 1.1 Mb and 2 plasmids, namely, pTiK306 and pTrK306, that are 262 kb and 581 kb, respectively.


2019 ◽  
Vol 128 (3) ◽  
pp. 828-839 ◽  
Author(s):  
K. Habbadi ◽  
Q. Duplay ◽  
D. Chapulliot ◽  
I. Kerzaon ◽  
R. Benkirane ◽  
...  

2019 ◽  
Vol 109 (11) ◽  
pp. 1859-1868 ◽  
Author(s):  
Hamzeh Mafakheri ◽  
S. Mohsen Taghavi ◽  
Joanna Puławska ◽  
Philippe de Lajudie ◽  
Florent Lassalle ◽  
...  

In this study, we explored the pathogenicity and phylogenetic position of Agrobacterium spp. strains isolated from crown gall tissues on annual, perennial, and ornamental plants in Iran. Of the 43 strains studied, 10 strains were identified as Allorhizobium vitis (formerly Agrobacterium vitis) using the species-specific primer pair PGF/PGR. Thirty-three remaining strains were studied using multilocus sequence analysis of four housekeeping genes (i.e., atpD, gyrB, recA, and rpoB), from which seven strains were identified as A. larrymoorei and one strain was identified as A. rubi (Rer); the remaining 25 strains were scattered within the A. tumefaciens species complex. Two strains were identified as genomospecies 1 (G1), seven strains were identified as A. radiobacter (G4), seven strains were identified as A. deltaense (G7), two strains were identified as A. nepotum (G14), and one strain was identified as “A. viscosum” (G15). The strains Rnr, Rnw, and Rew as well as the two strains OT33 and R13 all isolated from rose and the strain Ap1 isolated from apple were clustered in three atypical clades within the A. tumefaciens species complex. All but eight strains (i.e., Nec10, Ph38, Ph49, fic9, Fic72, R13, OT33, and Ap1) were pathogenic on tomato and sunflower seedlings in greenhouse conditions, whereas all but three strains (i.e., fic9, Fic72, and OT33) showed tumorigenicity on carrot root discs. The phylogenetic analysis and nucleotide diversity statistics suggested the existence of two novel genomospecies within the A. tumefaciens species complex, which we named “G19” and “G20.” Hence, we propose the strains Rew, Rnw, and Rnr as the members of “G19” and the strains R13 and OT33 as the members of G20, whereas the phylogenetic status of the atypical strain Ap1 remains undetermined.


Sign in / Sign up

Export Citation Format

Share Document