Analyzing effects of intra- and interspecific competition on timber quality attributes of Fagus sylvatica L.—from quality assessments on standing trees to sawn boards

2019 ◽  
Vol 138 (2) ◽  
pp. 327-343 ◽  
Author(s):  
Kirsten Höwler ◽  
Torsten Vor ◽  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Christian Ammer
2017 ◽  
Vol 47 (12) ◽  
pp. 1603-1613 ◽  
Author(s):  
Kirsten Höwler ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Dominik Seidel

Accurate information on the timber quality of hardwoods is often lacking, in particular for standing trees. In situ measurements of timber quality have the potential to improve the economic yield of a stand and may contribute to the optimal timing of a harvest and, in general, to improving forest management. Here, we used terrestrial laser scanning (TLS) to assess external timber quality metrics nondestructively. We investigated how competition intensity affected the metrics of 118 European beech (Fagus sylvatica L.) trees. We found that two newly developed TLS-based measures of external stem characteristics (number of bark anomalies per metre and stem non-circularity) were affected by competition intensity, suggesting that regulating competition levels may improve timber quality. Our study confirms empirical findings indicating a positive relationship between competition intensity and timber quality of European beech and offers a new methodology to assess external timber quality measures in the field objectively and nondestructively.


2004 ◽  
Vol 34 (11) ◽  
pp. 2340-2350 ◽  
Author(s):  
Gary Kerr

The effects of mixing ash (Fraxinus excelsior L.) with cherry (Prunus avium L.), oak (Quercus petraea (Matt.) Lieb., and Quercus robur L.), and beech (Fagus sylvatica L.) were investigated using a balanced two-component competition experiment. In general, two patterns of growth were observed. Firstly, in the ash–cherry experiment, two rapidly growing species altered their stem form and showed a plastic response to interspecific competition, and both species maintained a position in the upper canopy. Secondly, in the ash–oak and ash–beech experiments, a two-tier canopy formed with ash in the upper canopy, and interspecific competition resulted in an early nursing effect on the ash. In both patterns of growth, competition affected stem diameter and the shape of the tree with few, and only short-lived, effects on height. The maximum relative yield totals were 1.78 for ash–cherry, 1.77 for ash–oak, and 1.44 for ash–beech, indicating that the mixtures studied may be more productive in their early phase of growth than equivalent areas of pure species.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Author(s):  
Kirsten Höwler ◽  
Torsten Vor ◽  
Peter Schall ◽  
Peter Annighöfer ◽  
Dominik Seidel ◽  
...  

AbstractResearch on mixed forests has mostly focused on tree growth and productivity, or resistance and resilience in changing climate conditions, but only rarely on the effects of tree species mixing on timber quality. In particular, it is still unclear whether the numerous positive effects of mixed forests on productivity and stability come at the expense of timber quality. In this study, we used photographs of sawn boards from 90 European beech (Fagus sylvatica L.) trees of mixed and pure forest stands to analyze internal timber quality through the quality indicator knot surface that was quantitatively assessed using the software Datinf® Measure. We observed a decrease in knot surface with increasing distance from the pith as well as smaller values in the lower log sections. Regarding the influence of neighborhood species identity, we found only minor effects meaning that timber qualities in mixed stands of beech and Norway spruce (Picea abies (L.) H. Karst.) tended to be slightly worse compared to pure beech stands.


2019 ◽  
Vol 39 (5) ◽  
pp. 792-804 ◽  
Author(s):  
Pierre-Antoine Chuste ◽  
Catherine Massonnet ◽  
Dominique Gérant ◽  
Berndt Zeller ◽  
Joseph Levillain ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Astrid Stobbe ◽  
Maren Gumnior

In the Central German Uplands, Fagus sylvatica and Picea abies have been particularly affected by climate change. With the establishment of beech forests about 3000 years ago and pure spruce stands 500 years ago, they might be regarded as ‘neophytes’ in the Hessian forests. Palaeoecological investigations at wetland sites in the low mountain ranges and intramontane basins point to an asynchronous vegetation evolution in a comparatively small but heterogenous region. On the other hand, palynological data prove that sustainably managed woodlands with high proportions of Tilia have been persisting for several millennia, before the spread of beech took place as a result of a cooler and wetter climate and changes in land management. In view of increasingly warmer and drier conditions, Tilia cordata appears especially qualified to be an important silvicultural constituent of the future, not only due to its tolerance towards drought, but also its resistance to browsing, and the ability to reproduce vegetatively. Forest managers should be encouraged to actively promote the return to more stress-tolerant lime-dominated woodlands, similar to those that existed in the Subboreal chronozone.


Sign in / Sign up

Export Citation Format

Share Document