Small-scale spatial variability of particle concentrations and traffic levels in Montreal: a pilot study

2005 ◽  
Vol 338 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Audrey Smargiassi ◽  
Mary Baldwin ◽  
Charles Pilger ◽  
Rose Dugandzic ◽  
Michael Brauer
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2006 ◽  
Vol 26 (3) ◽  
pp. 351-362 ◽  
Author(s):  
T.J. Tolhurst ◽  
E.C. Defew ◽  
J.F.C. de Brouwer ◽  
K. Wolfstein ◽  
L.J. Stal ◽  
...  

2020 ◽  
Author(s):  
Aeriel D Belk ◽  
Toni Duarte ◽  
Casey Quinn ◽  
David A. Coil ◽  
Keith E. Belk ◽  
...  

Abstract Background. The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. After harvest, the internal temperature of the chicken is rapidly cooled to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and technoeconomic impacts of chilling methods on chicken broilers in a university meat laboratory setting. Results. We discovered that air-chilling (AC) methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that AC resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. Finally, a technoeconomic analysis highlighted potential economic advantages to AC when compared to water-chilling (WC) in facility locations where water costs are a more significant factor than energy costs. Conclusions. In this pilot study, AC chilling methods resulted in a superior product compared to WC methods and may have economic advantages in regions of the U.S. where water is expensive. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.


2015 ◽  
Vol 9 (5) ◽  
pp. 5719-5773
Author(s):  
A. Roy ◽  
A. Royer ◽  
O. St-Jean-Rondeau ◽  
B. Montpetit ◽  
G. Picard ◽  
...  

Abstract. This study aims to better understand and quantify the uncertainties in microwave snow emission models using the Dense Media Radiative Theory-Multilayer model (DMRT-ML) with in situ measurements of snow properties. We use surface-based radiometric measurements at 10.67, 19 and 37 GHz in boreal forest and subarctic environments and a new in situ dataset of measurements of snow properties (profiles of density, snow grain size and temperature, soil characterization and ice lens detection) acquired in the James Bay and Umijuaq regions of Northern Québec, Canada. A snow excavation experiment – where snow was removed from the ground to measure the microwave emission of bare frozen ground – shows that small-scale spatial variability in the emission of frozen soil is small. Hence, variability in the emission of frozen soil has a small effect on snow-covered brightness temperature (TB). Grain size and density measurement errors can explain the errors at 37 GHz, while the sensitivity of TB at 19 GHz to snow increases during the winter because of the snow grain growth that leads to scattering. Furthermore, the inclusion of observed ice lenses in DMRT-ML leads to significant improvements in the simulations at horizontal polarization (H-pol) for the three frequencies (up to 20 K of root mean square error). However, the representation of the spatial variability of TB remains poor at 10.67 and 19 GHz at H-pol given the spatial variability of ice lens characteristics and the difficulty in simulating snowpack stratigraphy related to the snow crust. The results also show that for ground-based radiometric measurements, forest emission reflected by the surface leads to TB underestimation of up to 40 K if neglected. We perform a comprehensive analysis of the components that contribute to the snow-covered microwave signal, which will help to develop DMRT-ML and to improve the required field measurements. The analysis shows that a better consideration of ice lenses and snow crusts is essential to improve TB simulations in boreal forest and subarctic environments.


Author(s):  
Sri Nanda G ◽  
Balaji S ◽  
Khayati Moudgil

Poison is known as a toxic and hazardous substance that is capable of causing illness to the living organisms. It can lead to some fatal outcomes. Self-harming has become a global issue, which is a burden on society. Every year millions of people die due to the consumption of toxic compound and leaving their loved ones behind in grief. The prospective pilot study was performed on a small scale for a period of three months. Each type of poison case admitted to Intensive care unit for the three months from July 2018 to September 2018 were taken into consideration. The informed consent has been obtained from all the patients, whereas demographics details of the patient were obtained using a predesigned data collection form. During the study period, 37 cases of poisoning were reviewed. The incidence is found to be more in males 28 (75.6%) when compared to females 9 (24.3%). Our study results showed that pesticides are the major reason for poisoning with an intention of self- harming. Majority of the poisoning cases were seen in the age group of 21-30 where physical and mental stress is the major reason.


2003 ◽  
Vol 33 (12) ◽  
pp. 2509-2513 ◽  
Author(s):  
Brian W Benscoter ◽  
R Kelman Wieder

Fire directly releases carbon (C) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal, western Canada, releasing 4.7 ± 0.6 Tg C to the atmosphere via direct combustion. We quantified within-site variation in organic matter lost via combustion in a bog peatland in association with the 116 000-ha Chisholm, Alberta, fire in 2001. We hypothesized that for peatlands with considerable small-scale microtopography (bogs and treed fens), hummocks will burn less than hollows. We found that hollows exhibit more combustion than hummocks, releasing nearly twice as much C to the atmosphere. Our results suggest that spatial variability in species composition and site hydrology within a landform and across a landscape could contribute to considerable spatial variation in the amounts of C released via combustion during peatland fire, although the magnitude of this variation may be dependent on fire severity.


2019 ◽  
Vol 7 ◽  
Author(s):  
Wakene Negassa ◽  
Christel Baum ◽  
Andre Schlichting ◽  
Jürgen Müller ◽  
Peter Leinweber

2015 ◽  
Vol 33 (2) ◽  
pp. 187-204 ◽  
Author(s):  
Erika Altmann

Purpose – The purpose of this paper is to explore the rise of strata manager as a newly emergent profession and note their impact on the governance within medium and high density, strata titled housing such as flats, apartments, town-houses and CIDs. Design/methodology/approach – This research presents finding from a small scale, qualitative research project focused on the interaction between the owner committee of management and strata managers. Findings – The introduction mandatory certification is championed by industry bodies. The strata managers considered they already demonstrated valuable attributes desired by committees of management. These differed to the attributes targeted by the new training regime, and the attributes valued by the committees of management. Research limitations/implications – This is a small scale pilot study. A larger study will need to be undertaken to confirm these results. Practical implications – There is a disjunct between the training and what strata managers consider relevant to undertaking their duties. This has significance for the ongoing governance of these properties and industry professionalisation. The resilience of Australia’s densification policies will depend on how learning will translate into better governance outcomes for owners. Social implications – One in three people within Australia’s eastern states lives or owns property within strata titled complex (apartments, flats and townhouse developments). The increasing number of strata managers and professionalisation within their industry has the ability to impact an increasing number of people. Originality/value – The impact of this new profession, and their requirements in terms of expertise has not been fully considered within existing academic literature.


Sign in / Sign up

Export Citation Format

Share Document