scholarly journals The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland

2021 ◽  
Vol 67 (5) ◽  
Author(s):  
Andrew W. Byrne ◽  
Andrew Parnell ◽  
James O’Keeffe ◽  
Jamie M. Madden

AbstractEstimating population size in space and time is essential for applied ecology and wildlife management purposes; however, making accurate and precise estimates at large scales is highly challenging. An example is the European badger (Meles meles), a widespread and abundant mammal in Ireland. Due to their role in the epidemiology of bovine tuberculosis, the species has been culled in agriculturally dominant landscapes with the intention of reducing spillback infection to local cattle populations. Despite several studies using different approaches having estimated badger populations at different time points and scales, there remains considerable uncertainty regarding the current population and its future trajectory. To explore this uncertainty, we use published data and expert opinion to estimate a snapshot of probable badger population size using a Monte Carlo approach, incorporating variation in three key components: social group numbers, group size, and culling efficacy. Using this approach, we estimate what the badger population in Ireland would be with/without culling, assuming a steady-state population at carrying capacity, and discuss the limitations of our current understanding. The mean estimate for the badger population size was 63,188 (5–95th percentile, 48,037–79,315). Population estimates were sensitive to the assumption of mean group size across landscape type. Assuming a cessation of culling (in favour of vaccination, for example) in agricultural areas, the mean estimated population size was 92,096 (5–95th percentile, 67,188–118,881). Despite significant research being conducted on badgers, estimates on population size at a national level in Ireland are only approximate, which is reflected in the large uncertainty in the estimates from this study and inconsistencies between recording of data parameters in previous studies. Focusing on carefully estimating group size, factors impacting its variation, in addition to understanding the dynamics of repopulation post-culling, could be a fruitful component to concentrate on to improve the precision of future estimates.

2005 ◽  
Vol 62 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Samu Mäntyniemi ◽  
Atso Romakkaniemi ◽  
Elja Arjas

We introduce a Bayesian probability model for the estimation of the size of an animal population from removal data. The model is based on the assumption that in the removal sampling, catchability may vary between individuals, which appears to be necessary for a realistic description of many biological populations. Heterogeneous catchability among individuals leads to a situation where the mean catchability in the population gradually decreases as the number of removals increases. Under this assumption, the model can be fitted to any removal data, i.e., there are no limitations regarding the total catch, the number of removals, or the decline of the catch. Using a published data set from removal experiments of a known population size, the model is shown to be able to estimate the population size appropriately in all cases considered. It is also shown that regardless of the statistical approach, a model that assumes equal catchability of individuals generally leads to an underestimation of the population. The example indicates that if there is only vague prior information about the variation of catchability among individuals, a very high number of successive removals may be needed to correctly estimate the population size.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0203910 ◽  
Author(s):  
Nadine Adrianna Sugianto ◽  
Chris Newman ◽  
David Whyte Macdonald ◽  
Christina Dagmar Buesching

Author(s):  
L.V. Vetchinnikova ◽  
◽  
A.F. Titov ◽  
◽  

The article reports on the application of the best known principles for mapping natural populations of curly (Karelian) birch Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti – one of the most appealing representatives of the forest tree flora. Relying on the synthesis and analysis of the published data amassed over nearly 100 years and the data from own full-scale studies done in the past few decades almost throughout the area where curly birch has grown naturally, it is concluded that its range outlined in the middle of the 20th century and since then hardly revised is outdated. The key factors and reasons necessitating its revision are specified. Herewith it is suggested that the range is delineated using the population approach, and the key element will be the critical population size below which the population is no longer viable in the long term. This approach implies that the boundaries of the taxon range depend on the boundaries of local populations (rather than the locations of individual trees or small clumps of trees), the size of which should not be lower than the critical value, which is supposed to be around 100–500 trees for curly birch. A schematic map of the curly birch range delineated using this approach is provided. We specially address the problem of determining the minimum population size to secure genetic diversity maintenance. The advantages of the population approach to delineating the distribution range of curly birch with regard to its biological features are highlighted. The authors argue that it enables a more accurate delineation of the range; shows the natural evolutionary history of the taxon (although it is not yet officially recognized as a species) and its range; can be relatively easily updated (e.g. depending on the scope of reintroduction); should be taken into account when working on the strategy of conservation and other actions designed to maintain and regenerate this unique representative of the forest tree flora.


Bird Study ◽  
2021 ◽  
pp. 1-13
Author(s):  
Esther F. Kettel ◽  
Ivan Lakin ◽  
Matthew J. Heydon ◽  
Gavin M. Siriwardena

Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1217-1228 ◽  
Author(s):  
Carsten Wiuf ◽  
Jotun Hein

Abstract In this article we discuss the ancestry of sequences sampled from the coalescent with recombination with constant population size 2N. We have studied a number of variables based on simulations of sample histories, and some analytical results are derived. Consider the leftmost nucleotide in the sequences. We show that the number of nucleotides sharing a most recent common ancestor (MRCA) with the leftmost nucleotide is ≈log(1 + 4N Lr)/4Nr when two sequences are compared, where L denotes sequence length in nucleotides, and r the recombination rate between any two neighboring nucleotides per generation. For larger samples, the number of nucleotides sharing MRCA with the leftmost nucleotide decreases and becomes almost independent of 4N Lr. Further, we show that a segment of the sequences sharing a MRCA consists in mean of 3/8Nr nucleotides, when two sequences are compared, and that this decreases toward 1/4Nr nucleotides when the whole population is sampled. A measure of the correlation between the genealogies of two nucleotides on two sequences is introduced. We show analytically that even when the nucleotides are separated by a large genetic distance, but share MRCA, the genealogies will show only little correlation. This is surprising, because the time until the two nucleotides shared MRCA is reciprocal to the genetic distance. Using simulations, the mean time until all positions in the sample have found a MRCA increases logarithmically with increasing sequence length and is considerably lower than a theoretically predicted upper bound. On the basis of simulations, it turns out that important properties of the coalescent with recombinations of the whole population are reflected in the properties of a sample of low size.


1980 ◽  
Vol 36 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Michael J. Wade

SUMMARYIn this paper I present the results of an experimental study of the effects of genotype and density on the mean and variance of offspring numbers in both sexes of the flour beetle, Tribolium castaneum. From the observed variance in offspring numbers the effective population size at several different densities is estimated using the methods of Crow & Morton (1955).I found that both the mean and variance of offspring numbers varied with genotype and density. In general, males were more variable in offspring numbers than females and this variability increased with density. Individuals homozygous for the black body colour mutant, b/b, were less variable in offspring numbers than + / + individuals, but the latter produced more offspring at most densities. As density increased, + / + individuals became more variable in offspring numbers whereas b/b individuals were less sensitive in this regard. These findings are discussed in relation to the ecology of selection at the black and closely linked loci.


2021 ◽  
Vol 9 ◽  
pp. 205031212110011
Author(s):  
Thabit Alotaibi ◽  
Abdulrhman Abuhaimed ◽  
Mohammed Alshahrani ◽  
Ahmed Albdelhady ◽  
Yousef Almubarak ◽  
...  

Background: The management of Acinetobacter baumannii infection is considered a challenge especially in an intensive care setting. The resistance rate makes it difficult to manage and is believed to lead to higher mortality. We aim to investigate the prevalence of Acinetobacter baumannii and explore how different antibiotic regimens could impact patient outcomes as there are no available published data to reflect our population in our region. Methods: We conducted a retrospective review of all infected adult patients admitted to the intensive care unit at King Fahad University Hospital with a confirmed laboratory diagnosis of Acinetobacter baumannii from 1 January 2013 until 31 December 2017. Positive cultures were obtained from the microbiology department and those meeting the inclusive criteria were selected. Variables were analyzed using descriptive analysis and cross-tabulation. Results were further reviewed and audited by blinded co-authors. Results: A comprehensive review of data identified 198 patients with Acinetobacter baumannii. The prevalence of Acinetobacter baumannii is 3.37%, and the overall mortality rate is 40.81%. Our sample consisted mainly of male patients, that is, 68.7%, with a mean age of 49 years, and the mean age of female patients was 56 years. The mean age of survivors was less than that of non-survivors, that is, 44.95 years of age. We observed that prior antibiotic use was higher in non-survivors compared to survivors. From the review of treatment provided for patients infected with Acinetobacter baumannii, 65 were treated with colistin alone, 18 were treated with carbapenems, and 22 were treated with a combination of both carbapenems and colistin. The mean length of stay of Acinetobacter baumannii–infected patients was 20.25 days. We found that the survival rates among patients who received carbapenems were higher compared to those who received colistin. Conclusion: We believe that multidrug-resistant Acinetobacter baumannii is prevalent and associated with a higher mortality rate and represents a challenging case for every intensive care unit physician. Further prospective studies are needed.


2003 ◽  
Vol 34 (4) ◽  
pp. 361-386 ◽  
Author(s):  
L. Sipelgas ◽  
H. Arst ◽  
K. Kallio ◽  
A. Erm ◽  
P. Oja ◽  
...  

The main objective of the present study is to test various methods for describing the absorption spectra of coloured dissolved organic matter (CDOM) and to determine the numerical values of some optical parameters of CDOM in lakes with diverse water quality. First, the parameters of an exponential model in different spectral intervals were determined. In addition, the suitability of some other models for the approximation of CDOM spectra was estimated. Specific absorption coefficients of CDOM were calculated from the absorption coefficients and dissolved organic carbon (DOC) concentrations. The experimental initial data were differences between spectral attenuation coefficients of filtered and distilled water. Two datasets were used: 1) for 13 Estonian and 7 Finnish lakes (altogether 404 spectra between 350 and 700 nm) measured by the Estonian Marine Institute (EMI); 2) for 10 Finnish lakes (73 spectra) measured by the Finnish Environment Institute (FEI). The spectra of CDOM absorption coefficients (aCDOM) were calculated from experimental data taking into account the correction due to scattering properties of colloids in the filtered water. The total content of CDOM in natural waters of Estonian and Finnish lakes was expressed by means of aCDOM at the wavelength of 380 nm. It varied significantly, from 0.71 to 19.5 m−1, the mean value (of all the investigated lakes) being around 6.6 m−1. Slopes of the exponential approximation varied widely, from 0.006 to 0.03 nm−1. Averaged over all lakes values of slope for the interval 380-500 nm obtained from the EMI dataset are close to those obtained from the FEI dataset: from 0.014 nm−1 (without correction) to 0.016-0.017 nm-1 (with different types of correction). These results are in good correspondence with most published data. Attempts to describe the spectra in the region of 350-700 nm by means of hyperexponential functions (∽ exp(-αλη)) show that: (1) η < 1 (in the case of traditional exponential approximation η = 1); (2) a promising idea is to seek the best fit only for wavelengths λ > λ1, where λ1 will be chosen taking into account the real shape of aCDOM spectra. The mean value of the specific absorption coefficient (a*CDOM) at the wavelength 380 nm obtained in this study (0.44 L mg−1 m−1) is close to the values published in the literature, if we assume that a*CDOM (380) is calculated using the data of dissolved organic matter (DOM). The optically non-active fraction of DOM in our study was high and therefore a*CDOM (380) was considerably higher (1.01 L mg−1 m−1) than a*CDOM (380). The results of the present work could be used in the modeling of underwater light field as well as in the interpretation of radiation measurements and optical remote sensing results.


Sign in / Sign up

Export Citation Format

Share Document