Fabrication of 3D printed modular microfluidic system for generating and manipulating complex emulsion droplets

2019 ◽  
Vol 23 (7) ◽  
Author(s):  
Ryungeun Song ◽  
Muhammad Salman Abbasi ◽  
Jinkee Lee
2019 ◽  
Author(s):  
Giraso Kabandana ◽  
Curtis G. Jones ◽  
Sahra Khan Sharifi ◽  
Chengpeng Chen

We developed a novel microfluidic system that enables automated and near real-time quantitation of indole release kinetics from biofilms.


Micromachines ◽  
2015 ◽  
Vol 6 (9) ◽  
pp. 1289-1305 ◽  
Author(s):  
Mohamed Yafia ◽  
Ali Ahmadi ◽  
Mina Hoorfar ◽  
Homayoun Najjaran

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yushen Zhang ◽  
Tsun-Ming Tseng ◽  
Ulf Schlichtmann

AbstractState-of-the-art microfluidic systems rely on relatively expensive and bulky off-chip infrastructures. The core of a system—the microfluidic chip—requires a clean room and dedicated skills to be fabricated. Thus, state-of-the-art microfluidic systems are barely accessible, especially for the do-it-yourself (DIY) community or enthusiasts. Recent emerging technology—3D-printing—has shown promise to fabricate microfluidic chips more simply, but the resulting chip is mainly hardened and single-layered and can hardly replace the state-of-the-art Polydimethylsiloxane (PDMS) chip. There exists no convenient fluidic control mechanism yet suitable for the hardened single-layered chip, and particularly, the hardened single-layered chip cannot replicate the pneumatic valve—an essential actuator for automatically controlled microfluidics. Instead, 3D-printable non-pneumatic or manually actuated valve designs are reported, but their application is limited. Here, we present a low-cost accessible all-in-one portable microfluidic system, which uses an easy-to-print single-layered 3D-printed microfluidic chip along with a novel active control mechanism for fluids to enable more applications. This active control mechanism is based on air or gas interception and can, e.g., block, direct, and transport fluid. As a demonstration, we show the system can automatically control the fluid in microfluidic chips, which we designed and printed with a consumer-grade 3D-printer. The system is comparably compact and can automatically perform user-programmed experiments. All operations can be done directly on the system with no additional host device required. This work could support the spread of low budget accessible microfluidic systems as portable, usable on-the-go devices and increase the application field of 3D-printed microfluidic devices.


2020 ◽  
Author(s):  
Curtis G. Jones ◽  
Tianjiao Huang ◽  
Jay H. Chung ◽  
Chengpeng Chen

<p>Because dysfunctions of endothelial cells are involved in many pathologies, <i>in vitro </i>endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible 3D structure of the native ECM. Endothelial cells rest on the basement membrane <i>in vivo</i>, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 µL/min, which covered the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells, and thus increased nitric oxide production. To the best of our knowledge, this is the most versatile endothelial model that has been reported, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling. </p>


2020 ◽  
Author(s):  
Curtis G. Jones ◽  
Tianjiao Huang ◽  
Jay H. Chung ◽  
Chengpeng Chen

<p>Because dysfunctions of endothelial cells are involved in many pathologies, <i>in vitro </i>endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible 3D structure of the native ECM. Endothelial cells rest on the basement membrane <i>in vivo</i>, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 µL/min, which covered the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells, and thus increased nitric oxide production. To the best of our knowledge, this is the most versatile endothelial model that has been reported, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling. </p>


Lab on a Chip ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 1250-1258 ◽  
Author(s):  
Young-June Park ◽  
Taejong Yu ◽  
Se-Jun Yim ◽  
Donghyun You ◽  
Dong-Pyo Kim

We present a flow distributor which ensures uniform flow distribution among stacked microchannels and its design manual for a scaled-up microfluidic system.


2021 ◽  
Author(s):  
Nicola Nuti ◽  
Philipp Rottmann ◽  
Ariane Stucki ◽  
Philipp Koch ◽  
Sven Panke ◽  
...  

The global surge in bacterial resistance against traditional antibiotics triggered intensive research for novel compounds, with antimicrobial peptides (AMPs) identified as a promising candidate. Automated methods to systematically generate and screen AMPs according to their membrane preference, however, are still lacking. We introduce a novel microfluidic system for the simultaneous cell-free production and screening of AMPs for their membrane specificity. On our device, AMPs are cell-free produced within water-in-oil-in-water double emulsion droplets, generated at high frequency. Within each droplet, the peptides can interact with different classes of co-encapsulated liposomes, generating a membrane-specific fluorescent signal. The double emulsions can be incubated and observed in a hydrodynamic trapping array or analysed via flow cytometry. Our approach provides a valuable tool for the discovery and development of membrane-active antimicrobials.


Particuology ◽  
2021 ◽  
Author(s):  
Jia Zhang ◽  
Ruotong Zhang ◽  
Yage Zhang ◽  
Yi Pan ◽  
Ho Cheung Shum ◽  
...  

2021 ◽  
Author(s):  
Mohammad Salman Parvez ◽  
Md Fazlay Rubby ◽  
Shanzida Kabir ◽  
Meah Imtiaz Zulkarnain ◽  
Nazmul Islam

Abstract Manipulation, guiding, and focusing of particles is an important phenomenon in the area of biomedical research. In most cases, particles are suspended in a microfluidic environment. These microfluidic environments can be high or low conductive. Most importantly these flows seeded with the micro-particles are manipulated and guided in microfluidic channels. Microfluidic channels have very low dimensions and considering the flow rate the characteristic of the flow in a microfluidic channel is laminar in nature. There are many micromachining methods available for fabricating microfluidic channels such as soft-lithography, wet etching, electroforming, PDMS molding, laser ablation followed by wet etching but in most of these cases, a microfabrication facility is required which is very costly in nature. Now a days 3D printing process is widely used to design microfluidic channels as a cheap process for conducting laboratory experiments. In this work, a 3D printed microfluidic channel fabrication process was presented along with a CAD drawing with microstructural dimension analysis. Previously V-electrode pattern was used in the static fluid system. In this work, a V-elect rode pattern was inserted in the microfluidic system for the first time to analyze the behavior of the flowing fluid of different conductivity under the application of AC current. The flow characteristics were presented and analyzed with the Reynolds number and the flow region of maximum velocity before and after the implementation of the AC electric field. The direction of the flow was also observed in the V-shaped microfluidics environment.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Xiaojun Chen ◽  
Deyun Mo ◽  
Manfeng Gong

Integrated microfluidic systems afford extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication restrict the design and assembly of truly complex systems. Here, a simple, reconfigurable and high fluid pressure modular microfluidic system is presented. The screw interconnects reversibly assemble each individual microfluidic module together. Screw connector provided leak-free fluidic communication, which could withstand fluid resistances up to 500 kPa between two interconnected microfluidic modules. A sample library of standardized components and connectors manufactured using 3D printing was developed. The capability for modular microfluidic system was demonstrated by generating sodium alginate gel microspheres. This 3D printed modular microfluidic system makes it possible to meet the needs of the end-user, and can be applied to bioassays, material synthesis, and other applications.


Sign in / Sign up

Export Citation Format

Share Document