scholarly journals Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yushen Zhang ◽  
Tsun-Ming Tseng ◽  
Ulf Schlichtmann

AbstractState-of-the-art microfluidic systems rely on relatively expensive and bulky off-chip infrastructures. The core of a system—the microfluidic chip—requires a clean room and dedicated skills to be fabricated. Thus, state-of-the-art microfluidic systems are barely accessible, especially for the do-it-yourself (DIY) community or enthusiasts. Recent emerging technology—3D-printing—has shown promise to fabricate microfluidic chips more simply, but the resulting chip is mainly hardened and single-layered and can hardly replace the state-of-the-art Polydimethylsiloxane (PDMS) chip. There exists no convenient fluidic control mechanism yet suitable for the hardened single-layered chip, and particularly, the hardened single-layered chip cannot replicate the pneumatic valve—an essential actuator for automatically controlled microfluidics. Instead, 3D-printable non-pneumatic or manually actuated valve designs are reported, but their application is limited. Here, we present a low-cost accessible all-in-one portable microfluidic system, which uses an easy-to-print single-layered 3D-printed microfluidic chip along with a novel active control mechanism for fluids to enable more applications. This active control mechanism is based on air or gas interception and can, e.g., block, direct, and transport fluid. As a demonstration, we show the system can automatically control the fluid in microfluidic chips, which we designed and printed with a consumer-grade 3D-printer. The system is comparably compact and can automatically perform user-programmed experiments. All operations can be done directly on the system with no additional host device required. This work could support the spread of low budget accessible microfluidic systems as portable, usable on-the-go devices and increase the application field of 3D-printed microfluidic devices.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


2012 ◽  
Vol 548 ◽  
pp. 254-257 ◽  
Author(s):  
Yan He ◽  
Bai Ling Huang ◽  
Yong Lai Zhang ◽  
Li Gang Niu

In this paper, a simple and facile technique for manufacturing glass-based microfluidic chips was developed. Instead of using expensive dry etching technology, the standard UV lithography and wet chemical etching technique was used to fabricate microchannels on a K9 glass substrate. The fabrication process of microfluidic chip including vacuum evaporation, annealing, lithography, and BHF (HF-NH4F-H2O) wet etching were investigated. Through series experiments, we found that anneal was the critical factor for chip quality. As a representative example, a microfluidic channel with 20 m of depth, and 80 m of width was successfully prepared, and the channel surfaces are quite smooth. These results present a simple, low cost, flexible and easy way to fabricate glass-based microfluidic chips.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Kena Song ◽  
Guoqiang Li ◽  
Xiangyang Zu ◽  
Zhe Du ◽  
Liyu Liu ◽  
...  

Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.


2007 ◽  
Vol 339 ◽  
pp. 246-251
Author(s):  
L.Q. Du ◽  
C. Liu ◽  
H.J. Liu ◽  
J. Qin ◽  
N. Li ◽  
...  

Micro hot embossing mold of microfluidic chip used in flow cytometry is designed and microfabricated. After some kinds of microfabrication processes are tried, this paper presents a novel microfabrication technology of micro hot embossing metal mold. Micro metal mold is fabricated by low-cost UV-LIGA surface micro fabrication process using negative thick photoresist, SU-8. Different from other micro hot embossing molds, the micro mold with vertical sidewalls is fabricated by micro nickel electroforming directly on Nickel base. Based on the micro Nickel mold and automation fabrication system, high precision and mass-producing microfluidic chips have been fabricated and they have been used in flow cytometry


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245206
Author(s):  
Harry Felton ◽  
Robert Hughes ◽  
Andrea Diaz-Gaxiola

This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Nikhil S. Gopal ◽  
Ruben Raychaudhuri

Background. Malaria control efforts are limited in rural areas. A low-cost system to monitor response without the use of electricity is needed. Plasmodium aldolase is a malaria biomarker measured using enzyme linked immunosorbent assay (ELISA) techniques. A three-part system using ELISA was developed consisting of a microfluidic chip, hand crank centrifuge, and a smartphone. Methods. A circular microfluidic chip was fabricated using clear acrylic and a CO2 laser. A series of passive valves released reagents at precise times based upon centrifugal force. Color change was measured via smartphone camera using an application programmed in Java. The microchip was compared to a standard 96-well sandwich ELISA. Results. Results from standard ELISA were compared to microchip at varying concentrations (1–10 ng/mL). Over 15 different microfluidic patterns were tested, and a final prototype of the chip was created. The prototype microchip was compared to standard sandwich ELISA (n=20) using samples of recombinant aldolase. Color readings of standard ELISA and microfluidic microchip showed similar results. Conclusion. A low-cost microfluidic system could detect and follow therapeutic outcomes in rural areas and identify resistant strains.


2011 ◽  
Vol 317-319 ◽  
pp. 1621-1626
Author(s):  
Wei Wang ◽  
Xiao Wei Liu ◽  
Shan Shan Chen ◽  
Xin Wang ◽  
Shao Feng Li ◽  
...  

The orifice which formed by the sudden change of channel’s scale on microfluidic chip and its application have introduced in this paper. The characteristics of orifice flow on microfluidic chip are studied by μ-PIV technology. The experimental PDMS chip is fabricated by hot press molding. The transient flow field experiment is carried out on the μ-PIV platform. The flow of thin-walled/thick-walled orifice was measured in experiment. There is flow constriction of orifice flow in jet state; the flow constriction of thick-walled orifice can pump the liquid in channel; and the critical Reynolds number of jet flow in microchannel structure is 190.


2021 ◽  
Author(s):  
Seyed Ali Tabatabaei ◽  
Mohammad Zabetian targhi

Abstract BackgroundIsolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation are of great importance in bioassays owing to the need for a smaller sample and device size, and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used in the process of separating cancer cells from the normal ones in the blood samples.ResultsThese components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2-20 µm), and monodisperse Polystyrene particles (diameter 5,15 µm), and the results exhibit an acceptable chip performance with 86 percent of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8 μm, 9.4 μm, and 5.9 μm at the Proposed reservoirs. ConclusionThis chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples, and it could be said Based on the results of the experiments, this low-cost and user-friendly setting can be used for a variety of microparticle separation programs such as cell separation in biological assays.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (23) ◽  
pp. 3638-3644 ◽  
Author(s):  
Ning Chang ◽  
Jingyan Zhai ◽  
Bing Liu ◽  
Jiping Zhou ◽  
Zhaoyu Zeng ◽  
...  

A low-cost three dimensional (3D) microfluidic chip was fabricated and integrated with photonic crystal beads for protein detection and multiplex bioassays.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 520 ◽  
Author(s):  
Eric Lepowsky ◽  
Reza Amin ◽  
Savas Tasoglu

Three-dimensional (3D) printing is emerging as a method for microfluidic device fabrication boasting facile and low-cost fabrication, as compared to conventional fabrication approaches, such as photolithography, for poly(dimethylsiloxane) (PDMS) counterparts. Additionally, there is an increasing trend in the development and implementation of miniaturized and automatized devices for health monitoring. While nonspecific protein adsorption by PDMS has been studied as a limitation for reusability, the protein adsorption characteristics of 3D-printed materials have not been well-studied or characterized. With these rationales in mind, we study the reusability of 3D-printed microfluidics chips. Herein, a 3D-printed cleaning chip, consisting of inlets for the sample, cleaning solution, and air, and a universal outlet, is presented to assess the reusability of a 3D-printed microfluidic device. Bovine serum albumin (BSA) was used a representative urinary protein and phosphate-buffered solution (PBS) was chosen as the cleaning agent. Using the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence detection method, the protein cross-contamination between samples and the protein uptake of the cleaning chip were assessed, demonstrating a feasible 3D-printed chip design and cleaning procedure to enable reusable microfluidic devices. The performance of the 3D-printed cleaning chip for real urine sample handling was then validated using a commercial dipstick assay.


Sign in / Sign up

Export Citation Format

Share Document