Mechanical Properties of Thermoplastic and Thermoset Composites Reinforced with 3D Biaxial Warp-knitted Fabrics

2018 ◽  
Vol 25 (4) ◽  
pp. 939-951
Author(s):  
Ali Al-darkazali ◽  
Pınar Çolak ◽  
Kemal Kadıoğlu ◽  
Erdinç Günaydın ◽  
Ibrahim Inanç ◽  
...  
2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


2010 ◽  
Vol 442 ◽  
pp. 335-341
Author(s):  
N. Ahmed ◽  
Mohammad Bilal Khan

The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading.


2013 ◽  
Vol 709 ◽  
pp. 238-241
Author(s):  
Qing Bin Yang ◽  
Gang Xu

The basic properties of the 3 Newdal knitted fabrics are measured with different instruments. Testing standards are tensile, wear resistance, pilling property and bending properties. By the analysis of the results, the following conclusions can be deduced: Among the 3 fabrics, the mechanical properties of the blended knitted fabrics Newdal /Polyester is the best.


2012 ◽  
Vol 627 ◽  
pp. 96-99
Author(s):  
Fan Rong Kong ◽  
Li Na Chen ◽  
Ming Xia Yang

This paper analyzes the performance of organic cotton fiber. Through the analysis of performance of ordinary cotton and organic cotton knitted fabrics, it was found that the mechanical properties of the organic cotton knits are somewhat less than ordinary cotton knits and there is no difference in wear ability between the two.


2011 ◽  
Vol 322 ◽  
pp. 444-447 ◽  
Author(s):  
Qing Bin Yang ◽  
Yu Kun Dou

In order to understand the influence of the blended ratio of the soybean protein fibers to the properties of blended fabrics, five soybean protein fiber/modal blended fabrics are knitted and tested. By the analysis of the results, the relationship between the properties of the blended fabrics and the blended ratio of the soybean protein fibers are obtained. With the increase of the ratio of the soybean protein fibers, the tensile strength and the elongation of the blended fabrics increase and the tearing strength and bursting strength of the fabric decrease. With the increase of the ratio of soybean protein fibers, the softness increases and the bending length, abrasion resistance of the knitted fabrics decrease.


Sign in / Sign up

Export Citation Format

Share Document