scholarly journals Preparation and Evaluation of the Polyethylene Film Deposited With a Multilayer Graphene Membrane for Tensile Properties

Author(s):  
Ji Li ◽  
Jiawen Qiu ◽  
Xiaogang Chen ◽  
Muhammed Said Ergoktas ◽  
Coskun Kocabas

AbstractThis study aims to improve the tensile properties of the polyethylene film deposited with a multilayer graphene membrane, in order to establish the understanding of the influence of the methane to hydrogen ratio on the tensile properties of the multilayer graphene membrane. Multilayer graphene membranes were prepared using the chemical vapor deposition method. Four types of multilayer graphene membranes were prepared with different ratios of methane to hydrogen before depositing a membrane on the polyethylene film. Experiments showed that the tensile strength of the polyethylene films with multilayer graphene deposition increased 7 times and the Young’s modulus 5 times more than that of pure polyethylene films, when the ratio of methane to hydrogen was set to 35/100 sccm. A compromise between hydrogen and methane mixture is required to achieve uniform growth of graphene. Insufficient hydrogen cannot activate the surface bound carbon that is necessary for continuous growth. Continuous and well-defined multilayer graphene was synthesized when the ratio of methane to hydrogen reached up a proper value.

2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhenzhen Tian ◽  
Xiaoming Yuan ◽  
Ziran Zhang ◽  
Wuao Jia ◽  
Jian Zhou ◽  
...  

AbstractGrowth of high-quality III–V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III–V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III–V nanowire growth studies provide an excellent example to guide the nanowire growth.


2021 ◽  
Author(s):  
Haipeng Wang ◽  
Cheng Liu ◽  
HuiLi Wang ◽  
Xinpeng Han ◽  
Shaojie Zhang ◽  
...  

One of the phosphorus allotropes called greenish phosphorus was successfully synthesized by simple chemical vapor deposition method. We revealed that the critical factors in the formation mechanism of greenish phosphorus...


Nanoscale ◽  
2011 ◽  
Vol 3 (8) ◽  
pp. 3072 ◽  
Author(s):  
Yu Ye ◽  
Yaoguang Ma ◽  
Song Yue ◽  
Lun Dai ◽  
Hu Meng ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongpeng Zhao ◽  
Xueqing Zuo ◽  
Yuan Guo ◽  
Hui Huang ◽  
Hao Zhang ◽  
...  

AbstractRecently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate “3D helix–2D sheet–1D fiber–0D dot” hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core–shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation. "Image missing"


Sign in / Sign up

Export Citation Format

Share Document