Effects of water stress on water use efficiency and water balance components of Hippophae rhamnoides and Caragana intermedia in the soil–plant–atmosphere continuum

2010 ◽  
Vol 80 (3) ◽  
pp. 423-435 ◽  
Author(s):  
Weihua Guo ◽  
Bo Li ◽  
Xinshi Zhang ◽  
Renqing Wang
2011 ◽  
Vol 350 (1-2) ◽  
pp. 221-235 ◽  
Author(s):  
Paul L. Drake ◽  
Daniel S. Mendham ◽  
Don A. White ◽  
Gary N. Ogden ◽  
Bernard Dell

2020 ◽  
Vol 12 (18) ◽  
pp. 7678
Author(s):  
Giorgio Baiamonte ◽  
Mario Minacapilli ◽  
Giuseppina Crescimanno

This paper aimed at investigating if the application of biochar (BC) to desert sand (DS) from the United Arab Emirates (UAE), characterized by a very poor soil-water retention (SWR) and by a very low value of the maximum water available for crops (AWmax), could positively affect soil water balance, by reducing the irrigation needs (VIRR) and improving the irrigation water use efficiency (IWUE) and the water use efficiency (WUE). The analysis was performed for three crops, i.e., wheat (Triticum aestivum), sorghum (Sorghum vulgare) and tomato (Lycopersicon esculentum). BC was applied to the DS at different fractions, fBC (fBC = 0, 0.091, 0.23 and 0.33). Drip irrigation was adopted as a highly efficient water saving method, which is particularly relevant in arid, water-scarce countries. Soil water balance and irrigation scheduling were simulated by application of the AQUACROP model, using as input the SWR measured without and with BC addition. The effect of BC was investigated under either a no-water stress (NWS) condition for the crops or deficit irrigation (DI). The results showed that the application of BC made it possible to reduce the predicted VIRR and to increase the IWUE under the NWS scenario, especially for wheat and sorghum, with less evident benefits for tomato. When a deficit irrigation (DI) was considered, even at the lowest considered fBC (0.091), BC counterbalanced the lower VIRR provided under DI, thus mitigating the yield reduction due to water stress, and improved the WUE. The influence of BC was more pronounced in wheat and tomato than in sorghum. The results evidenced that the application of BC could be a potential strategy for saving irrigation water and/or reducing the effects of drought stress in desert sand. This means that biochar could be used a management option to promote local production and reduce the dependency on food import, not only in the UAE, but also in other countries with extremely arid climatic conditions and large extensions of sandy soils similar to the considered DS.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
M.E.A. Borba ◽  
G.M. Maciel ◽  
E.F. Fraga Júnior ◽  
C.S. Machado Júnior ◽  
G.R. Marquez ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 1682 ◽  
Author(s):  
Kelly Thorp ◽  
Alison Thompson ◽  
Sara Harders ◽  
Andrew French ◽  
Richard Ward

Improvement of crop water use efficiency (CWUE), defined as crop yield per volume of water used, is an important goal for both crop management and breeding. While many technologies have been developed for measuring crop water use in crop management studies, rarely have these techniques been applied at the scale of breeding plots. The objective was to develop a high-throughput methodology for quantifying water use in a cotton breeding trial at Maricopa, AZ, USA in 2016 and 2017, using evapotranspiration (ET) measurements from a co-located irrigation management trial to evaluate the approach. Approximately weekly overflights with an unmanned aerial system provided multispectral imagery from which plot-level fractional vegetation cover ( f c ) was computed. The f c data were used to drive a daily ET-based soil water balance model for seasonal crop water use quantification. A mixed model statistical analysis demonstrated that differences in ET and CWUE could be discriminated among eight cotton varieties ( p < 0 . 05 ), which were sown at two planting dates and managed with four irrigation levels. The results permitted breeders to identify cotton varieties with more favorable water use characteristics and higher CWUE, indicating that the methodology could become a useful tool for breeding selection.


2014 ◽  
Vol 94 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Olanike Aladenola ◽  
Chandra Madramootoo

Aladenola, O. and Madramootoo, C. 2014. Response of greenhouse-grown bell pepper (Capsicum annuum L.) to variable irrigation. Can. J. Plant Sci. 94: 303–310. In order to optimize water use in bell pepper production information about the appropriate irrigation water applications and agronomic and physiological response to mild and severe water stress is necessary. Different water applications were tested on yield, quality and water stress threshold of greenhouse-grown bell pepper (Capsicum annuum L.) cultivar Red Knight in 2011 and 2012 on the Macdonald Campus of McGill University, Ste Anne De Bellevue, QC. The study was carried out on a soil substrate in the greenhouse. Irrigation was scheduled with four treatments:120% (T1), 100% (T2), 80% (T3), and 40% (T4) replenishment of crop evapotranspiration in a completely randomized design. The highest marketable yield, water use efficiency and irrigation water use efficiency were obtained with T1 in both years. T1 received 20% more water than T2 to produce 23% more marketable yield than T2. Fruit total soluble solids content was highest in T4, and smallest in T1. The mean crop water stress index (CWSI) of the irrigation treatments ranged between 0.08 and 1.18. Leaf stomatal conductance of bell pepper was 75 to 80% lower in T4 than in T1. Regression obtained between stomatal conductance and CWSI resulted in a polynomial curve with coefficients of determination of 0.88 and 0.97 in 2011 and 2012, respectively. The result from this study indicate that the yield derived justifies the use of an extra quantity of water. Information from this study will help water regulators to make appropriate decision about water to be allocated for greenhouse production of bell pepper.


Sign in / Sign up

Export Citation Format

Share Document