Statistical property feature extraction based on FRFT for fault diagnosis of analog circuits

2016 ◽  
Vol 87 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Ping Song ◽  
Yuzhu He ◽  
Weijia Cui
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yuehai Wang ◽  
Yongzheng Yan ◽  
Qinyong Wang

Fault diagnosis for analog circuit has become a prominent factor in improving the reliability of integrated circuit due to its irreplaceability in modern integrated circuits. In fact fault diagnosis based on intelligent algorithms has become a popular research topic as efficient feature extraction and selection are a critical and intricate task in analog fault diagnosis. Further, it is extremely important to propose some general guidelines for the optimal feature extraction and selection. In this paper, based on wavelet analysis, we will study the problems of mother wavelets selection, number of decomposition levels, and candidate coefficients selection by using a four-op-amp biquad filter circuit. After conducting several comparative experiments, some general guidelines for feature extraction for this type of analog circuits fault diagnosis are derived.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


2013 ◽  
Vol 721 ◽  
pp. 367-371
Author(s):  
Yong Kui Sun ◽  
Zhi Bin Yu

Analog circuits fault diagnosis using multifractal analysis is presented in this paper. The faulty response of circuit under test is analyzed by multifratal formalism, and the fault feature consists of multifractal spectrum parameters. Support vector machine is used to identify the faults. Experimental results prove the proposed method is effective and the diagnosis accuracy reaches 98%.


Sign in / Sign up

Export Citation Format

Share Document