Nonlinear dynamical magnetosonic wave interactions and collisions in magnetized plasma

2020 ◽  
Vol 41 (8) ◽  
pp. 1139-1156
Author(s):  
M. Ishaq ◽  
Hang Xu

Most of the matter in the Universe is in the plasma state. A plasma will be defined and the concepts of quasi-neutrality and Debye distance introduced. The subject has its historical roots in gas discharge, astrophysics and ionospheric physics. Key theoretical concepts were developed in the context of those subjects. However, only in the last two decades, under the pressures of the controlled thermonuclear and space exploration programmes, have these concepts been tested experimentally. The theory of collisions in plasma has special features owing to the Coulomb nature of the interaction. Magnetized plasma is a medium in which a rich variety of small signal waves can propagate. Charged particle—wave interactions lead to collisionless (Landau) damping and growth mechanisms. Finally, nonlinear phenomena in plasma can and do change its transport properties by orders of magnitude. Our lack of detailed understanding of these nonlinear phenomena applies equally to natural plasmas and to plasmas in both inertially and magnetically confined fusion systems. This feature provides the challenge and the fascination of high temperature plasma physics.


2008 ◽  
Vol 74 (1) ◽  
pp. 99-105 ◽  
Author(s):  
G. BRODIN ◽  
P. K. SHUKLA ◽  
L. STENFLO

AbstractWe present a new efficient wave decay channel involving nonlinear interactions between a compressional Alfvén wave, a kinetic Alfvén wave, and a modified ion sound wave in a magnetized plasma. It is found that the wave coupling strength of the ideal magnetohydrodynamic (MHD) theory is much increased when the effects due to the Hall current are included in a Hall–MHD description of wave–wave interactions. In particular, with a compressional Alfvén pump wave well described by the ideal MHD theory, we find that the growth rate is very high when the decay products have wavelengths of the order of the ion thermal gyroradius or shorter, in which case they must be described by the Hall–MHD equations. The significance of our results to the heating of space and laboratory plasmas as well as for the Solar corona and interstellar media are highlighted.


2019 ◽  
Vol 37 (4) ◽  
pp. 341-345
Author(s):  
Narender Kumar ◽  
Ram Kishor Singh ◽  
R. Uma ◽  
R. P. Sharma

AbstractA scheme of phase-matched terahertz generation by beating two co-propagating lasers in magnetized plasma, in the presence of a magnetosonic wave (MSW), is developed. The beat frequency ponderomotive force of the lasers imparts an oscillatory drift to electrons. The electron drift velocity couples with the electron density perturbation associated with the MSW to produce an irrotational nonlinear current $\left(\nabla \times {\vec J}\;{}^{\rm NL}\ne 0\right)$. The beat current density resonantly excites a THz (Terahertz) radiation when the phase-matching conditions are satisfied. The MSW mediates the phase matching. At 9.6 and 10.6 µm wavelengths, and background magnetic field of 285 kG, one may achieve normalized THz wave amplitude of the order of 10−3 and one obtains the ratio of THz power to pump power of the order of 10−6.


1990 ◽  
Vol 44 (3) ◽  
pp. 489-506 ◽  
Author(s):  
N. N. Rao

The existence as well as the structure of magnetosonic wave-plateau shocks driven by upper-hybrid waves in a two-component electron-ion magnetized plasma is analysed. In the incident region the field quantities have a standing-wave structure, whereas in the evanescent region they monotonically reach constant values. The plasma flow velocity undergoes a transition from submagnetosonic (in the evanescent region) to supermagnetosonic (in the incident region) values via the magnetosonic point. The number density (or the magnetic field) across the shock-front region has a steep gradient and connects a rarefaction (under-dense) wave in the incident region to a shelf-like (over-dense) structure in the evanescent region, where the upper-hybrid electric field drops to zero monotonically. For the case of small- but finite-amplitude shocks the detailed structures of the profiles are obtained analytically. For large-amplitude shocks the profiles are computed using numerical methods. An extension of the present theory as well as some possible applications are pointed out.


1972 ◽  
Vol 7 (2) ◽  
pp. 363-371
Author(s):  
Eldon J. Linnebur ◽  
Terry Kammash

The resonant three-wave interactions in an infinite homogeneous magnetized plasma are re-examined using the improved hierarchy presented in part 1. An equation for the wave energy is obtained which, for a spectrum made up entirely of marginally stable waves, is shown to be a second-order Markoffian differential equation, rather than a first-order equation as obtained by others. The conditions under which a first-order equation is derived are examined and discussed. For a spectrum composed of waves with small growth, rates, it is shown that the equation for the plasmon density always has a stationary solution, thus eliminating the occurrence of an ‘explosive instability’ in such systems.


2004 ◽  
Vol 22 (6) ◽  
pp. 2171-2179 ◽  
Author(s):  
C. Krafft ◽  
A. Volokitin

Abstract. A theoretical and numerical model is presented which describes the nonlinear interaction of lower hybrid waves with a non-equilibrium electron distribution function in a magnetized plasma. The paper presents some relevant examples of numerical simulations which show the nonlinear evolution of a set of three waves interacting at various resonance velocities with a flux of electrons presenting some anisotropy in the parallel velocity distribution (suprathermal tail); in particular, the case when the interactions between the waves are neglected (for sufficiently small waves' amplitudes) is compared to the case when the three waves follow a resonant decay process. A competition between excitation (due to the fan instability with tail electrons or to the bump-in-tail instability at the Landau resonances) and damping processes (involving bulk electrons at the Landau resonances) takes place for each wave, depending on the strength of the wave-wave coupling, on the linear growth rates of the waves and on the modifications of the particles' distribution resulting from the linear and nonlinear wave-particle interactions. It is shown that the energy carried by the suprathermal electron tail is more effectively transfered to lower energy electrons in the presence of wave-wave interactions.


2000 ◽  
Vol 64 (1) ◽  
pp. 57-74 ◽  
Author(s):  
M. C. de JULI ◽  
R. S. SCHNEIDER

The dielectric tensor for a multicomponent magnetized dusty plasma, including the effect of capture of plasma electrons and ions by the dust particles, is rewritten in order to provide expressions more suitable for applications. We use this tensor to study the spatial absorption of a magnetosonic wave, including effects up to second order in the Larmor radius. We analyse the absorption of the wave due to the presence of dust particles with variable charge and the modification of this absorption due to finite-Larmor-radius effects.


Sign in / Sign up

Export Citation Format

Share Document