Cyclin-dependent protein kinase 2 activity is required for mitochondrial translocation of Bax and disruption of mitochondrial transmembrane potential during etoposide-induced apoptosis

APOPTOSIS ◽  
2007 ◽  
Vol 12 (7) ◽  
pp. 1229-1241 ◽  
Author(s):  
Joon-Seok Choi ◽  
Soona Shin ◽  
Ying Hua Jin ◽  
Hyungshin Yim ◽  
Kyo-Tan Koo ◽  
...  
2004 ◽  
Vol 23 (4) ◽  
pp. 959-968 ◽  
Author(s):  
Reiko Onuki ◽  
Yoshio Bando ◽  
Eigo Suyama ◽  
Taiichi Katayama ◽  
Hiroaki Kawasaki ◽  
...  

2004 ◽  
Vol 33 (2) ◽  
pp. 511-522 ◽  
Author(s):  
J Liu ◽  
X-D Li ◽  
A Ora ◽  
P Heikkilä ◽  
A Vaheri ◽  
...  

Adrenocorticotropin is the major regulator of adrenocortical development and function. It acts mainly through the cAMP-dependent protein kinase A (PKA) pathway. Our aim was to study the interaction of tumor necrosis factor-α (TNFα) and the PKA pathway in adrenocortical cell proliferation and apoptosis. The PKA activator Dibutyryl cAMP ((Bu)2cAMP) strongly induced differentiation and inhibited proliferation in the human adrenocortical cell line NCI-H295R (H295R). TNFα induced apoptosis of H295R cells. Interestingly, (Bu)2cAMP treatment clearly enhanced TNFα-induced apoptosis in H295R cells, but not in another human adrenocortical cell line SW-13, the mouse adrenocortical Y-1 cell line or the human HeLa cell line. This synergistic effect was not due to the (Bu)2cAMP-induced glucocorticoid secretion since dexamethasone had no significant effect on the TNFα-induced apoptosis. (Bu)2cAMP treatment rapidly increased the expression of the proto-oncogene c-myc in H295R cells, but not in SW-13, Y-1 or HeLa cells. In transient c-myc transfection assay, c-myc expression associated with decreased expression of the proliferation marker Ki-67 in H295R cells. In conclusion, cAMP-dependent protein kinase activation reduced proliferation and augmented TNFα-induced apoptosis in adrenocortical H295R cells, and these effects were associated with increased c-myc expression.


Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5602-5616 ◽  
Author(s):  
Irida Kastrati ◽  
Praneeth D. Edirisinghe ◽  
Gihani T. Wijewickrama ◽  
Gregory R. J. Thatcher

Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E2) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E2. Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E2 + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E2-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.


Sign in / Sign up

Export Citation Format

Share Document