The perturbation of gravitational waves in plasma in the FRW space-time

2015 ◽  
Vol 361 (1) ◽  
Author(s):  
Manal H. Youssef
2013 ◽  
Vol 45 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
J. W. Maluf ◽  
S. C. Ulhoa ◽  
J. F. da Rocha-Neto

2021 ◽  
Vol 4 (1) ◽  

In the age of information, it is no secret that the modern science is in a very difficult position. On the one hand, it has high hopes for solving the problems of modern humanity and very practical tasks. On the other hand, science shows limited potential and difficulty in carrying out the tasks. Beyond scientific theory remain such phenomena as gravity and gravitational waves and other unexplored and very useful phenomena. Obviously, the reason for these limited capabilities of modern science is its limited foundation. The foundation of science is determined by its basic axioms. If we expand the foundation of science, we will be able to build a more comprehensive, perfect and voluminous theory. In two monographs and a series of articles the author offers a system of extended axioms (with two new axioms) and a more extended theory (with eight new laws). To the great surprise of even the author, this new theory turned out to be extensive enough to cover and explain and the gravity. Moreover, the extended axioms and theory directly and naturally outlined the algorithm in the explanation of the so-called Gravity Funnels. According to the new axioms and laws, Gravity Funnels are both for suction (accelerating) and for expansion (decelerating). Expansion Gravity Funnel decelerates along its longitudinal direction as emits the matter in the transverse direction. In this way it consumes energy and generates matter. Suction Gravity Funnel accelerates along its longitudinal direction as sucks the matter in transverse direction. In this way it consumes matter and generates energy. The both of Funnels are situated in a new Space-time. The Space-time of decelerating and accelerating Funnels is packed by longitudinal vortices, in which the Space (S) is constant. It is radically different of the Space-Time where we live now. The Space-time where we live now is packed by cross vortices, where the time (T) is constant. According the new Axioms and Laws the two described Space- times are mutually orthogonal.


An exact solution of Einstein’s equations, with a source derived from a perfect fluid in which the energy density, ε , is equal to the pressure, p , is obtained. The solution describes the space–time following the collision of plane impulsive gravitational waves and is the natural generalization of the Nutku─Halil solution of the vacuum equations, in the region of interaction under similar basic conditions. A consistent extension of the solution, prior to the instant of collision, requires that the fluid in the region of interaction is the direct result of a transformation of incident null-dust (i. e. of massless particles describing null trajectories). The ultimate result of the collision is the development of a space─time singularity, the nature of which is strongly dependent on the amplitude and the character of the sound waves that are present. The distribution of ε that follows the collision has many intriguing features. The solution obtained in this paper provides the first example of an induced transformation of a massless into a massive particle.


An exact solution, describing the dispersion of a wave packet of gravita­tional radiation, having initially (at time t = 0) an impulsive character, is analysed. The impulsive character of the wave-packet derives from the space-time being flat, except at a radial distance ϖ = ϖ 1 (say) at t = 0, and the time-derivative of the Weyl scalars exhibiting δ-function singu­larities at ϖ = ϖ 1 , when t → 0. The principal feature of the dispersion is the development of a singularity of the metric function, v , and of the Weyl scalar, ψ 2 , when the wave, after reflection at the centre, collides with the still incoming waves. The evolution of the metric functions and of the Weyl scalars, as the dispersion progresses, is illustrated graphically.


An exact solution is obtained for colliding plane impulsive gravitational waves accompanied by shock waves, which, in contrast to other known solutions, results in the development of a null surface which acts like an event horizon. The analytic extension of the solution across the null surface reveals the existence of time-like curvature singularities along two hyperbolic arcs in the extended domain, reminiscent of the ring singularity of the Kerr metric. Besides, the space-time, in the region of the interaction of the colliding waves, is of Petrov-type D and locally isometric to the Kerr space-time in a region interior to the ergosphere. Various other aspects of the solution are also discussed.


2016 ◽  
Vol 31 (4) ◽  
pp. 464-492 ◽  
Author(s):  
Stefan Helmreich

In February 2016, U.S.-based astronomers announced that they had detected gravitational waves, vibrations in the substance of space-time. When they made the detection public, they translated the signal into sound, a “chirp,” a sound wave swooping up in frequency, indexing, scientists said, the collision of two black holes 1.3 billion years ago. Drawing on interviews with gravitational-wave scientists at MIT and interpreting popular representations of this cosmic audio, I ask after these scientists’ acoustemology—that is, what the anthropologist of sound Steven Feld would call their “sonic way of knowing and being.” Some scientists suggest that interpreting gravitational-wave sounds requires them to develop a “vocabulary,” a trained judgment about how to listen to the impress of interstellar vibration on the medium of the detector. Gravitational-wave detection sounds, I argue, are thus articulations of theories with models and of models with instrumental captures of the cosmically nonhuman. Such articulations, based on mathematical and technological formalisms—Einstein’s equations, interferometric observatories, and sound files—operate alongside less fully disciplined collections of acoustic, auditory, and even musical metaphors, which I call informalisms. Those informalisms then bounce back on the original articulations, leading to rhetorical reverb, in which articulations—amplified through analogies, similes, and metaphors—become difficult to fully isolate from the rhetorical reflections they generate. Filtering analysis through a number of accompanying sound files, this article contributes to the anthropology of listening, positing that scientific audition often operates by listening through technologies that have been tuned to render theories and their accompanying formalisms both materially explicit and interpretively resonant.


2019 ◽  
Vol 11 (2) ◽  
pp. 53
Author(s):  
Edward Jiménez ◽  
Nicolás Recalde ◽  
Wilson P. Álvarez-Samaniego ◽  
Borys Álvarez-Samaniego ◽  
Douglas Moya-Álvarez ◽  
...  

By using X-rays of a linear accelerator (LINAC Siemens X rays, 6 MeV) for medical use, we were able to measure gravitational waves, GW, (amplitude = 56:385mm, frequency =1 = 3Hz, velocity = c and polarization) and its threedimensional effect on X-ray trajectories. The collimated X-ray beam, which is in the plane (X; Y); travels on the Z axis at the speed of light in air and passing through the machine isocenter, until it reaches the target and, ultimate, is recorded in a radiographic film. Apparently, there is an exceptional coincidence in the operation of LINAC and the presence of GW. This coincidence occurred in VIRGINIA, GPS (38.634 351 1, -77.282 523 9), UTC (12/06/2011: 12: 56: 01). This important event, but not sui generis, was recorded in the LINAC computer system, on a film for radiography, in the log file of the cancer treatment center and it was reported to SIEMENS in order to try to find an explanation of a possible hardware failure, some abnormality or any software issue. The physicist and Siemens service engineer on site concluded that such event should never happened because LINAC was not malfunctioning. Consequently, for the X-rays, there was a deviation of the isocenter of the LINAC (△X = (11:5 ± 0:5)mm, △Y = (48 ± 0:5)mm), by the action of the amplitude of GW. The tolerance of a LINAC is lower than these measurements, and the equipment will stop working if they are greater than ±1:0mm for isocenter (zero position) and ±2:0mm for other collimator leaf positions. Therefore, this constitutes a register of space-time alteration with a consequent variation of the path of the X-ray beam. Finally, the registered gravitational waves leave invariant the angle between the axes (X; Y), of the X-ray beam, indicating a constant polarization.


2018 ◽  
pp. 106-109
Author(s):  
Alvaro De Rújula

Gravitational waves emitted by black hole mergers. The first LIGO event: GW150917, the coalescence of two black holes of twenty nine and thirty six solar masses into one of “only” sixty two. The remaining three solar masses were emitted as energy in gravitational waves, a gigantic and perfect storm in the fabric of space-time. This is the dawn of a new era: The opening of the third “window” through which to look at the sky. Yet another triumph of general relativity. How much progress astrophysics has made since my time as a student.


2008 ◽  
Vol 05 (02) ◽  
pp. 185-195 ◽  
Author(s):  
S. CAPOZZIELLO ◽  
C. STORNAIOLO

A definition of space-time metric deformations on an n-dimensional manifold is given. We show that such deformations can be regarded as extended conformal transformations. In particular, their features can be related to the perturbation theory giving a natural picture by which gravitational waves are described by small deformations of the metric. As further result, deformations can be related to approximate Killing vectors (approximate symmetries) by which it is possible to parameterize the deformed region of a given manifold. The perspectives and some possible physical applications of such an approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document