scholarly journals Dynamical system analysis of a five-dimensional cosmological model

2018 ◽  
Vol 363 (10) ◽  
Author(s):  
A. Savaş Arapoğlu ◽  
Ezgi Yalçınkaya ◽  
A. Emrah Yükselci

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Soumya Chakraborty ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

AbstractThe present work deals with Cosmological model of a three-form field, minimally coupled to gravity and interacting with cold dark matter in the background of flat FLRW space-time. By suitable choice of the dimensionless variables, the evolution equations are converted to an autonomous system and cosmological study is done by dynamical system analysis. The critical points are determined and the stability of the (non-hyperbolic) equilibrium points are examined by center manifold Theory. Possible bifurcation scenarios have been examined by the Poincaré index theory to identify possible cosmological phase transition. Also stabilities of the critical points have been analyzed globally using geometric features.





2020 ◽  
Author(s):  
Nilanjana Mahata ◽  
Subenoy Chakraborty


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.



2009 ◽  
Vol 29 (3) ◽  
pp. 370-376 ◽  
Author(s):  
Sheri P. Silfies ◽  
Anand Bhattacharya ◽  
Scott Biely ◽  
Sue S. Smith ◽  
Simon Giszter


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Soumya Chakraborty ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

AbstractA cosmological model having matter field as (non) interacting dark energy (DE) and baryonic matter and minimally coupled to gravity is considered in the present work with flat FLRW space time. The DE is chosen in the form of a three-form field while radiation and dust (i.e; cold dark matter) are the baryonic part. The cosmic evolution is studied through dynamical system analysis of the autonomous system so formed from the evolution equations by suitable choice of the dimensionless variables. The stability of the non-hyperbolic critical points are examined by Center manifold theory and possible bifurcation scenarios have been examined.



1977 ◽  
Vol 10 (2) ◽  
pp. 44-50 ◽  
Author(s):  
C. McCorkell ◽  
N. Wilson

Dynamical system analysis is included in undergraduate courses in the Northern Ireland Polytechnic, as part of a presentation of general engineering methodology and more particularly, accompanied by synthesis techniques, in control options at final year honours level. Such is the extent of the computational requirement, necessary for a non-trivial treatment, that steps have been taken to introduce computer usage where possible. Included is information on the initial stage of a project undertaken to provide for the computational needs of undergraduates involved in dynamical problems in the laboratory.



Sign in / Sign up

Export Citation Format

Share Document