scholarly journals Model of seismic design lateral force levels for the existing reinforced concrete European building stock

2021 ◽  
Vol 19 (7) ◽  
pp. 2839-2865
Author(s):  
Helen Crowley ◽  
Venetia Despotaki ◽  
Vitor Silva ◽  
Jamal Dabbeek ◽  
Xavier Romão ◽  
...  
1994 ◽  
Vol 10 (2) ◽  
pp. 333-356 ◽  
Author(s):  
Kazuhiko Kawashima ◽  
Kinji Hasegawa

This paper presents the new seismic design specifications for highway bridges issued by the Ministry of Construction in February 1990. Revisions of the previous specifications were based on the damage characteristics of highway bridges that were developed after the recent earthquakes. The primary revised items include the seismic lateral force, evaluation of inertia force for design of substructures considering structural response, checking the bearing capacity of reinforced concrete piers for lateral load, and dynamic response analysis. Emphasis is placed on the background of the revisions introduced in the new seismic design specifications.


2001 ◽  
Vol 28 (6) ◽  
pp. 922-937 ◽  
Author(s):  
T Paulay

It is postulated that for purposes of seismic design, the ductile behaviour of lateral force-resisting wall components, elements, and indeed the entire system can be satisfactorily simulated by bilinear force–displacement modeling. This enables displacement relationships between the system and its constituent components at a particular limit state to be readily established. To this end, some widely used fallacies, relevant to the transition from the elastic to the plastic domain of behaviour, are exposed. A redefinition of stiffness and yield displacement allows more realistic predictions of the important feature of seismic response, component displacements, to be made. The concepts are rational, yet very simple. Their applications are interwoven with the designer's intentions. Contrary to current design practice, whereby a specific global displacement ductility capacity is prescribed for a particular structural class, the designer can determine the acceptable displacement demand to be imposed on the system. This should protect critical components against excessive displacements. Specific intended displacement demands and capacities of systems comprising reinforced concrete cantilever and coupled walls can be estimated.Key words: ductility, displacements, reinforced concrete, seismic design, stiffness, structural walls.


Author(s):  
G. Michele Calvi ◽  
Daniel P. Abrams ◽  
Hugo Bachmann ◽  
Shaoliang Bai ◽  
Patricio Bonelli ◽  
...  

Author(s):  
Herian Leyva ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Julián Carrillo ◽  
...  

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


2021 ◽  
Vol 93 (1) ◽  
pp. 16-25
Author(s):  
P.D. DEMINOV ◽  

The estimate of failure probability on the inclined section from the action of transverse forces, as well as the total probability of the limit States of reinforced concrete beams with probabilistic strength parameters lying on an elastic Foundation model V.Z. Vlasov-P.L. Pasternak, possessing stochastic properties. Probabilistic characteristics of the transverse force and its distribution density are constructed for a Foundation beam resting on an elastic base with two random characteristics, loaded with a quasi-stationary random load, taking into account the probabilistic nature of the strength properties of concrete and reinforcement. It is shown that if the spectral densities of the bed and load coefficients are fractional rational functions, the deflection correlation functions and, accordingly, the deflection variance are calculated using the residue theory.


2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


Sign in / Sign up

Export Citation Format

Share Document