Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa

2009 ◽  
Vol 32 (3) ◽  
pp. 423-428 ◽  
Author(s):  
Myung-Hwan Park ◽  
Keun-Hee Kim ◽  
Huk-Hee Lee ◽  
Jin-Seog Kim ◽  
Soon-Jin Hwang
2020 ◽  
Vol 11 (2) ◽  
pp. 1849-1856
Author(s):  
Chin Zi Hang ◽  
Neeraj Kumar Fuloria ◽  
Oh Jian Hong ◽  
Chuah Bee Kim ◽  
Bernice Yii Shu Ting ◽  
...  

Facts over microorganisms to predominate periodontitis, shifting of human microbiota by Dimocarpus longan (D. longan) plant, and potentiation of antimicrobial activity by biosynthetic silver nanoparticles (SNPs) intended present study to biosynthesize, optimize, characterize and evaluate the antimicrobial potential of silver nanoparticles (SNPs) obtained using D. longan leaves aqueous extract (DLLAE). Study involved preparation of DLLAE using decoction method. The DLLAE was subjected to biosynthesis of SNPs followed by optimization (using UV-Visible spectrometry), characterization (by FTIR, FESEM, XRD, and EDX), stability, and antimicrobial activity of SNPs against periodontitis triggering human microflora. Biosynthesized SNPs exhibited signal between 416-453 nm. Optimization study established AgNO3 concentration (5 mM), pH 4, DLLAE and AgNO3 ratio (1:9) and temperature (60°C) as parametric requirement for SNPs biosynthesis using DLLAE. Stability study exhibited signal between 489-553 nm supporting SNPs stability. Characterization data of FESEM showed that SNPs were poly dispersed, and spherical shaped. Biosynthesized SNPs size ranged from 74.82 nm to 131.5 nm. The XRD data revealed presence of signals at 38.08°, 44.33°, 64.47°, and 78.83° 2θ values indexed to silver cubic structure planes. In EDX study, silver exhibited strong signal (55.54%). Antimicrobial investigation explored the high inhibitory potential of SNPs against B. subtilis and P. aeruginosa; and low inhibitory potential against S. aureus and E. coli. Present study conclude that biosynthesis of SNPs using DLLAE is an efficient method and biosynthetic SNPs possess high antimicrobial potential against P. aeruginosa and B. subtilis the periodontitis triggering pathogens.


2015 ◽  
Vol 14 (2) ◽  
pp. 67-74
Author(s):  
D. V. Chegodar ◽  
A. V. Kubyshkin ◽  
V. V. Panasenko

In our research we have investigated the effect of intraperitoneal introduction of silver nanoparticles solution (linear particle size of 10–20 nm) into intact animals and in the simulation of experimental peritonitis. We have evaluated the indices of nonspecific proteinases and their inhibitors in blood serum and peritoneum lavage. The intraperitoneal introduction of silver nanoparticles solution to intact animals leads to the minimal reaction of proteinase-inhibitor systems components in blood serum and peritoneum lavage. When modeling inflammatory process in peritoneum cavity by intraperitoneal injection of 10% filtered fecal suspension of rats, application of silver nanoparticles solution is accompanied by decrease in extent of activation of proteinases and preservation of inhibitory potential, both at systemic and local level, which can indicate antiinflammatory effects of nanosilver.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bartosz Skóra ◽  
Urszula Krajewska ◽  
Anna Nowak ◽  
Andrzej Dziedzic ◽  
Adriana Barylyak ◽  
...  

AbstractDrug-resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of bacterial virulency in human infections is based on their adhesion ability and biofilm formation. Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular-based synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, measured by hydrodynamic light scattering (DLS). The energy dispersive X-ray spectroscopy (EDS) of NPs confirms the presence of silver and showed that sulfur-rich compounds act as a capping agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through the metabolic activity, cell viability and wound-healing assays. Last, but not least, ability to deep penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) to show its potential as the material for root-end filling.


2016 ◽  
Vol 28 (1) ◽  
pp. 359-367 ◽  
Author(s):  
Sekar Dinesh Kumar ◽  
Ganesan Singaravelu ◽  
Singaravelu Ajithkumar ◽  
Kadarkarai Murugan ◽  
Marcello Nicoletti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document