scholarly journals Expression of Phi11 Gp07 Causes Filamentation in Escherichia coli

2018 ◽  
Vol 12 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Avijit Das ◽  
Sumit Biswas ◽  
Malabika Biswas

Background:The Gp07 protein of aureophage Phi11 exhibits growth inhibitory effects when overexpressed inE. coli.The protein harbors two domains- an amino terminal Bro-like domain and a carboxy terminal Ant superfamily like KilA domain, of which the KilA domain retains the growth inhibitory effect of Gp07.Methods:We studied the effects exerted by the overexpression of Gp07 and its separate domains upon the growth rate as well as the morphology of theE. colicells. Additionally, we generated a mutant of Gp07 (designated as ΔGp07) by deleting the first eleven amino acid residues from the amino-terminal region of Gp07, and studied its growth inhibitory effects uponE. coli.Results:Our results indicate that Gp07, ΔGp07 as well as the Carboxy-terminal region of Gp07 upon overexpression, retards the growth rate of theE. colicells and also induces filamentation in the cells. Surprisingly, our data clearly suggests that the growth inhibition and filamentation induced by the the amino-terminal domain of Gp07 is temporal in nature.Conclusion:The carboxy-terminal of domain of gp07 is essential for its activity.

2007 ◽  
Vol 27 (4-5) ◽  
pp. 189-223 ◽  
Author(s):  
H. Raghuraman ◽  
Amitabha Chattopadhyay

Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid–protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin–membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.


2004 ◽  
Vol 101 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Takashi Kawano ◽  
Shuzo Oshita ◽  
Akira Takahashi ◽  
Yasuo Tsutsumi ◽  
Yoshinobu Tomiyama ◽  
...  

Background Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. Methods The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. Results Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. Conclusions Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.


1989 ◽  
Vol 9 (6) ◽  
pp. 2648-2656
Author(s):  
A MacAuley ◽  
J A Cooper

The kinase activity of p60c-src is derepressed by removal of phosphate from Tyr-527, mutation of this residue to Phe, or binding of a carboxy-terminal antibody. We have compared the structures of repressed and active p60c-src, using proteases. All forms of p60c-src are susceptible to proteolysis at the boundary between the amino-terminal region and the kinase domain, but there are several sites elsewhere that are more sensitive to trypsin digestion in repressed than in derepressed forms of p60c-src. The carboxy-terminal tail (containing Tyr-527) is more sensitive to digestion by pronase E and thermolysin when Tyr-527 is not phosphorylated. The kinase domain fragment released with trypsin has kinase activity. Relative to intact p60c-src, the kinase domain fragment shows altered substrate specificity, diminished regulation by the phosphorylated carboxy terminus, and novel phosphorylation sites. The results identify parts of p60c-src that change conformation upon kinase activation and suggest functions for the amino-terminal region.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


1987 ◽  
Author(s):  
A B Federici ◽  
S D Berkowitz

We have previously shown that carbohydrate (CHO) protects von Willebrand factor (vWF) from proteolytic degradation. We have now shown that removal of CHO from the vWF subunit exposes additional cleavage sites in the amino terminal region and that cleavages in this region are associated with loss of large multimers. We examined and compared the extent of large multimer loss with sites of subunit cleavage of native and GHO-modified vWF after treatment with plasmin, chymotrypsin, and trypsin. Highly purified vWF was treated with neuraminidase and β-galactosidase in the presence of proteinase inhibitors to remove 90-95% of the sialic acid and 45-50% of the D-galactose without loss of large multimers or diminution of the ristocetin cofactor activity. The extent and approximate location of subunit cleavage was determined by immunoblotting and monoclonal antibody epitope mapping. Multimeric analysis revealed an increasingly greater loss of large multimers when native vWF was digested with plasmin, chymotrypsin, and trypsin, respectively. Large multimer loss was more extensive with each enzyme after CHO-modification of vWF. On subunit analysis, plasmin, chymotrypsin, and trypsin were shown to produce both amino and carboxy terminal fragments. The number, location, and relative quantities of carboxy terminal fragments produced by these enzymes were unchanged after CHO modification. However, digestion of the amino terminal region was considerably more extensive as judged by a marked decrease or absence of the larger fragments seen when native vWF was digested, and by the appearance of new smaller molecular weight species. Thus, enzymatic digestion of vWF after removal of carbohydrate produced new cleavages in the amino terminal region but did not alter the location or extent of carboxy terminal cleavages. Therefore, the greater loss of large multimers that occurs after CHO modification is likely to be the result of cleavages in the amino terminal region of the molecule. It appears that by protecting the vWF subunit against amino terminal cleavage, carbohydrate inhibits the loss of large multimers.


1973 ◽  
Vol 137 (4) ◽  
pp. 1009-1023 ◽  
Author(s):  
Nathaniel F. Pierce

Natural cholera toxoid appears to act as a competitive inhibitor of cholera enterotoxin and is thus a useful tool for studying the interaction of cholera enterotoxin with cell membranes. Cholera enterotoxin binds to gut mucosa more rapidly than does its natural toxoid. Once binding occurs, however, it appears to be prolonged for both materials. Formalinized cholera toxoid has no inhibitory effect upon cholera enterotoxin. Enterotoxic activity, ability to bind to gut mucosa, and antitoxigenicity appear to be independent properties of cholera enterotoxin. Natural cholera toxoid does not inhibit Escherichia coli enterotoxin, indicating that although the two enterotoxins activate the same mucosal secretory mechanism they occupy different binding sites in the mucosa. Ganglioside, which may be the mucosal receptor of cholera enterotoxin, is highly efficient in deactivating cholera enterotoxin. By contrast, ganglioside is relatively inefficient in deactivating heat-labile E. coli enterotoxin and is without effect upon the heat-stable component of E. coli enterotoxin. These findings suggest that ganglioside is not likely to be the mucosal receptor for E. coli enterotoxin. Differences in cellular binding of E. coli and cholera enterotoxins may explain, at least in part, the marked differences in the time of onset and duration of their effects upon gut secretion.


1971 ◽  
Vol 133 (6) ◽  
pp. 1309-1324 ◽  
Author(s):  
Herbert Lindsley ◽  
Mart Mannik ◽  
Paul Bornstein

Immunological studies of rat skin collagen were carried out with a sensitive and quantitative radioimmunoassay. Hyperimmune rabbit antisera to rat skin collagen and isolated α2 chains were used. Iodine-labeled α chains and CNBr-produced peptides served as test antigens, and native collagen, α chains, and CNBr peptides were employed as inhibitors in the assay. The α1 and α2 chains were immunologically distinct. Although the α1 chain was not immunogenic, antibodies to α1 were detected in antisera to the intact collagen molecule. The major antigenic determinant of the α1 chain was located in α1-CB6 which constitutes the carboxy-terminal region of the chain. The α2 chain contained two non-cross-reacting antigenic determinants, one in the amino-terminal region (α2-CB1) and the other in the carboxy-terminal region (α2-CB5) of the chain. The native collagen molecule was less effective than isolated α chains in inhibiting binding of labeled peptides to antisera, indicating that antigenic determinants were less accessible in the triple helical molecule. These immunologic studies are consistent with preliminary comparative biochemical data which indicate that interspecies structural differences in collagen predominate at both the amino- and carboxy-terminal ends of the chains.


2001 ◽  
Vol 75 (2) ◽  
pp. 850-856 ◽  
Author(s):  
Teresa A. Brandt ◽  
Bertram L. Jacobs

ABSTRACT The vaccinia virus (VV) E3L gene is responsible for providing interferon (IFN) resistance and a broad host range to VV in cell culture. The E3L gene product contains two distinct domains. A conserved carboxy-terminal domain, which is required for the IFN resistance and broad host range of the virus, has been shown to bind double-stranded RNA (dsRNA) and inhibit the antiviral dsRNA-dependent protein kinase, PKR. The amino-terminal domain, while conserved among orthopoxviruses, is dispensable in cell culture. To study the role of E3L in whole-animal infections, WR strain VV recombinants either lacking E3L (VVΔE3L) or expressing an amino-terminal (VVE3LΔ83N) or carboxy-terminal (VVE3LΔ26C) truncation of E3L were constructed. Whereas wild-type VV had a 50% lethal dose of approximately 104 PFU after intranasal infection, and elicited severe weight loss and morbidity, VVΔE3L was apathogenic, leading to no death, weight loss, or morbidity. VVΔE3L was also apathogenic after intracranial injection. Although the amino-terminal domain of E3L is dispensable for infection of cells in culture, both the amino- and carboxy-terminal domains of E3L were required for full pathogenesis in intranasal infections. These results demonstrate that the entire E3L gene is required for pathogenesis in the mouse model.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2200-2200
Author(s):  
Atsuko Igari ◽  
Takanori Moriki ◽  
Terumichi Nakagawa ◽  
Yusuke Yamaguchi ◽  
Mitsuru Murata

Abstract Abstract 2200 ADAMTS13 specifically cleaves multimeric von Willebrand factor (VWF) into smaller molecules to reduce its high reactivity with platelets. The disintegrin-like (D) domain, adjacent to the catalytic domain of ADAMTS13, plays an important role in the process of VWF cleavage. In this study, we aimed to elucidate critical peptide sequences in D-domain involved in the interaction with VWF. A series of partially overlapping peptide sequences, approximately 20 amino acids in length, covering the D-domain, were synthesized and the inhibitory effects on the catalytic activity of plasma ADAMTS13 was examined using FRETS-VWF73 assay. Consequently, some synthetic peptides were selected and the minimal length necessary for the inhibitory effect was determined as TFAREHLDMCQALSC (peptide323-337). Removal of the amino-terminal threonine diminished the inhibitory effect moderately, although deletion of the carboxyl-terminal cysteine abolished it completely. According to the amino acids alignment of ADAMTS family, this peptide sequence is not conserved, highlighting the specific role in the interaction with its substrate. From the recent analysis of crystal structure, amino-terminal half of the peptide323-337, TFAREHL (323-329), was disordered and designated as the variable (V) loop, which creates one of VWF-binding exosites (Akiyama, et al. Proc Natl Acad Sci USA. 2009; 106:19274-9). We hypothesized that the amino-terminal amino acids of the peptide323-337 contribute to VWF binding, whereas the carboxyl-terminal amino acids allow the structural stability of the peptide conformation. To evaluate the effect of carboxyl-terminal cysteine at 337, other synthetic peptides with alanine, serine, glycine or phenylalanine instead of the cysteine (C337A, C337S, C337G, or C337F) were tested about their inhibitory effects on the catalytic activity. Interestingly, C337A, C337S, C337G peptides exhibited slightly weaker inhibitory effects on VWF73 catalysis, although C337F peptide showed stronger inhibition than wild-type sequence, suggesting that the residue 337 regulates the characteristics of the peptide323-337. From the results of peptide screening, the amino- and carboxyl-terminal amino acids of the peptide323-337, TFAREHLDMCQALSC, likely play key roles in the inhibitory effects; therefore, the middle part of the sequence, HLDMC, was replaced by 5 alanines (AAAAA) or reversed sequence CMDLH. Surprisingly, the converted peptides still retained the equivalent level of inhibitory effects, indicating both sides of the amino- and carboxyl-terminal amino acids were especially significant in the interaction with VWF. In conclusion, we characterized the peptide sequence, TFAREHLDMCQALSC (323-337), in D-domain. The peptide clearly inhibited the cleavage of VWF73 and the both sides of amino- and carboxyl-terminal amino acids seemed especially important. The peptide sequence is supposed to bind to VWF for the precise cleavage in the process of proteolysis. By modifying this peptide sequence, such variant ADAMTS13 as gain-of-function recombinants might be developed, leading to an alternative anti-thrombotic drug. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document