Remote Sensing Methods to Investigate Boundary-layer Structures relevant to Air Pollution in Cities

2006 ◽  
Vol 121 (2) ◽  
pp. 377-385 ◽  
Author(s):  
Stefan Emeis ◽  
Klaus Schäfer
2016 ◽  
Author(s):  
Grigorii P. Kokhanenko ◽  
Yurii S. Balin ◽  
Sergei V. Nasonov ◽  
Ioganes E. Penner ◽  
Svetlana V. Samoilova ◽  
...  

2021 ◽  
Author(s):  
Tianning Su ◽  
Youtong Zheng ◽  
Zhanqing Li

Abstract. The states of coupling between clouds and surface or boundary-layer have been investigated much more extensively for marine stratocumulus clouds than for continental low clouds, partly due to more complex thermodynamic structures over land. A manifestation is a lack of robust remote sensing methods to identify coupled and decoupled clouds over land. Here, we have generalized the concept of coupling and decoupling to low clouds over land, based on potential temperature profiles. Furthermore, by using ample measurements from a lidar and a suite of surface meteorological instruments at the U.S. Department of Energy’s Atmospheric Radiation Measurement Program’s Southern Great Plains site from 1998 to 2019, we have developed a method to simultaneously retrieve the planetary boundary layer (PBL) height (PBLH) and coupled states under cloudy conditions during the daytime. The coupled states derived from lidar show strong consistency with those derived from radiosondes. Retrieving the PBLH under cloudy conditions that has been a persistent problem in lidar remote sensing, is resolved in this study. Our method can lead to high-quality retrievals of the PBLH under cloudy conditions and the determination of cloud coupling states. With the new method, we find that coupled clouds are sensitive to changes in the PBL with a strong diurnal cycle, whereas decoupled clouds and the PBL are weakly related. Since coupled and decoupled clouds have distinct features, our new method offers an advanced tool to separately investigate them in climate systems.


2018 ◽  
Vol 176 ◽  
pp. 06011 ◽  
Author(s):  
Hossein Panahifar ◽  
Hamid Khalesifard

The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


2000 ◽  
pp. 16-25
Author(s):  
E. I. Rachkovskaya ◽  
S. S. Temirbekov ◽  
R. E. Sadvokasov

Capabilities of the remote sensing methods for making maps of actual and potential vegetation, and assessment of the extent of anthropogenic transformation of rangelands are presented in the paper. Study area is a large intermountain depression, which is under intensive agricultural use. Color photographs have been made by Aircraft camera Wild Heerburg RC-30 and multispectral scanner Daedalus (AMS) digital aerial data (6 bands, 3.5m resolution) have been used for analysis of distribution and assessment of the state of vegetation. Digital data were processed using specialized program ENVI 3.0. Main stages of the development of cartographic models have been described: initial processing of the aerial images and their visualization, preliminary pre-field interpretation (classification) of the images on the basis of unsupervised automated classification, field studies (geobotanical records and GPS measurements at the sites chosen at previous stage). Post-field stage had the following sub-stages: final geometric correction of the digital images, elaboration of the classification system for the main mapping subdivisions, final supervised automated classification on the basis of expert assessment. By systematizing clusters of the obtained classified image the cartographic models of the study area have been made. Application of the new technology of remote sensing allowed making qualitative and quantitative assessment of modern state of rangelands.


Sign in / Sign up

Export Citation Format

Share Document