scholarly journals The Impact of Atmosphere–Ocean–Wave Coupling on the Near-Surface Wind Speed in Forecasts of Extratropical Cyclones

Author(s):  
Emanuele S. Gentile ◽  
Suzanne L. Gray ◽  
Janet F. Barlow ◽  
Huw W. Lewis ◽  
John M. Edwards

AbstractAccurate modelling of air–sea surface exchanges is crucial for reliable extreme surface wind-speed forecasts. While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between the atmosphere, ocean and wave model components. Here, we investigate the sensitivity of extreme surface wind speeds to air–sea exchanges at the kilometre scale using coupled and uncoupled configurations of the Met Office’s UK Regional Coupled Environmental Prediction system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 m s$$^{-1}$$ - 1 over the UK. Compared with the atmosphere-only results, coupling to the ocean decreases the domain-average sea-surface temperature by up to 0.5 K. Inclusion of coupling to waves reduce the 98th percentile 10-m wind speed by up to 2 m s$$^{-1}$$ - 1 as young, growing wind waves reduce the wind speed by increasing the sea-surface aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1 m s$$^{-1}$$ - 1 , due to enhanced boundary-layer turbulence which partially offsets air–sea momentum transfer. Using a new drag parametrization based on the Coupled Ocean–Atmosphere Response Experiment 4.0 parametrization, with a cap on the neutral drag coefficient and reduction for wind speeds exceeding 27 m s$$^{-1}$$ - 1 , the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind-speed skill as coupling to waves, with the advantage of saving the computational cost of the ocean and wave models.

2021 ◽  
Author(s):  
Emanuele Silvio Gentile ◽  
Suzanne L. Gray ◽  
Janet F. Barlow ◽  
Huw W. Lewis ◽  
John M. Edwards

<p>Accurate modelling of air-sea surface exchanges is crucial for reliable extreme surface wind forecasts.  While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between atmosphere, ocean and wave model components.</p><p>Here, we present the results of studying the sensitivity of extreme surface wind speeds to air-sea exchanges at kilometre scale using coupled and uncoupled configurations of the Met Office's UK Regional Coupled Environmental Prediction (UKC4) system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 ms<sup>-1</sup> over the UK.</p><p>Compared to the atmosphere-only results, coupling to ocean decreases the domain-average sea surface temperature by up to 0.5 K. Inclusion of coupling to waves decreases the 98th percentile 10-m wind speed by up to 2 ms<sup>-1</sup> as young, growing wind waves decrease wind speed by increasing the sea aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1ms <sup>-1,</sup> due to enhanced boundary-layer turbulence which partially offsets air-sea momentum transfer.</p><p>Using a new drag parametrization based on the COARE~4.0 scheme, with a cap on the neutral drag coefficient and decrease for wind speeds exceeding 27 ms<sup>-1 </sup>, the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind skill as coupling to waves, with  the  advantage  of saving the computational cost of the ocean and wave models. </p>


2017 ◽  
Vol 30 (1) ◽  
pp. 91-107 ◽  
Author(s):  
Qingtao Song ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Andrew R. Brown

This study presents an assessment of the impact of a March 2006 change in the Met Office operational global numerical weather prediction model through the introduction of a nonlocal momentum mixing scheme. From comparisons with satellite observations of surface wind speed and sea surface temperature (SST), it is concluded that the new parameterization had a relatively minor impact on SST-induced changes in sea surface wind speed in the Met Office model in the September and October 2007 monthly averages over the Agulhas Return Current region considered here. The performance of the new parameterization of vertical mixing was evaluated near the surface layer and further through comparisons with results obtained using a wide range of sensitivity of mixing parameterization to stability in the Weather Research and Forecasting (WRF) Model, which is easily adapted to such sensitivity studies. While the new parameterization of vertical mixing improves the Met Office model response to SST in highly unstable (convective) conditions, it is concluded that significantly enhanced vertical mixing in the neutral to moderately unstable conditions (nondimensional stability [Formula: see text] between 0 and −2) typically found over the ocean is required in order for the model surface wind response to SST to match the satellite observations. Likewise, the reduced mixing in stable conditions in the new parameterization is also relatively small; for the range of the gradient Richardson number typically found over the ocean, the mixing was reduced by a maximum of only 10%, which is too small by more than an order of magnitude to be consistent with the satellite observations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1736
Author(s):  
Zhongqing Cao ◽  
Lixin Guo ◽  
Shifeng Kang ◽  
Xianhai Cheng ◽  
Qingliang Li ◽  
...  

In ground-based microwave radiometer remote sensing, low-elevation-angle (−3°~3°) radiation data are often discarded because they are considered to be of little value and are often difficult to model due to the complicated mechanism. Based on the observed X-band horizontal polarization low elevation angle microwave radiation data and the meteorological data at the same time, this study investigated the generation mechanism of low elevation angle brightness temperature (LEATB) and its relationship with meteorological data, i.e., temperature, humidity, and wind speed, under low sea state. As a result, one could find that the LEATB was sensitive to the atmosphere at the elevation angle between 1° to 3°, and a diurnal variation of the LEATB reached up to 10 K. This study also found a linear relationship between the LEATB and sea surface wind speed under low sea state at an elevation range from −3° to 0°, i.e., the brightness temperature decreased as the wind speed increased, which was inconsistent with the observations at the elevation angle from −10° to −5°. The variation of the LEATB difference according to the change in the over-the-horizon detection capability (OTHDC) of the shipborne microwave radar was examined to identify the reason for this phenomenon theoretically. The results showed that the LEATB difference was significantly influenced by a change in the OTHDC. Further, this study examined a remote sensing method to extract the sea surface wind speed data from experimental LEATB data under low sea state. The results demonstrated that the X-band horizontal polarization LEATBs were useful to retrieve the sea surface wind speed data at a reasonable accuracy—the root mean square error of 0.02408 m/s. Overall, this study proved the promising potential of the LEATB data for retrieving temperature profiles, humidity profiles, sea surface winds, and the OTHDC.


Author(s):  
Shakeel Asharaf ◽  
Duane E. Waliser ◽  
Derek J. Posselt ◽  
Christopher S. Ruf ◽  
Chidong Zhang ◽  
...  

AbstractSurface wind plays a crucial role in many local/regional weather and climate processes, especially through the exchanges of energy, mass and momentum across the Earth’s surface. However, there is a lack of consistent observations with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that remotely sense near surface wind speed over the tropical and sub-tropical oceans with relatively high sampling rates both temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2 m s-1 root mean squared difference, meeting the NASA science mission Level-1 uncertainty requirement for wind speeds below 20 m s-1. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind product, which in turn may help to unravel the complexities of air-sea interaction in regions that are relatively under-sampled by other observing platforms.


2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


2010 ◽  
Vol 23 (5) ◽  
pp. 1209-1225 ◽  
Author(s):  
Hui Wan ◽  
Xiaolan L. Wang ◽  
Val R. Swail

Abstract Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer heights to the standard 10-m level. Monthly mean near-surface wind speed series were then derived and subjected to a statistical homogeneity test, with homogeneous monthly mean geostrophic wind (geowind) speed series being used as reference series. Homogenized monthly mean near-surface wind speed series were obtained by adjusting all significant mean shifts, using the results of the statistical test and modeling along with all available metadata, and were used to assess the long-term trends. This study shows that station relocation and anemometer height change are the main causes for discontinuities in the near-surface wind speed series, followed by instrumentation problems or changes, and observing environment changes. It also shows that the effects of artificial mean shifts on the results of trend analysis are remarkable, and that the homogenized near-surface wind speed series show good spatial consistency of trends, which are in agreement with long-term trends estimated from independent datasets, such as surface winds in the United States and cyclone activity indices and ocean wave heights in the region. These indicate success in the homogenization of the wind data. During the period analyzed, the homogenized near-surface wind speed series show significant decreases throughout western Canada and most parts of southern Canada (except the Maritimes) in all seasons, with significant increases in the central Canadian Arctic in all seasons and in the Maritimes in spring and autumn.


2021 ◽  
pp. 1-52
Author(s):  
Cheng Shen ◽  
Jinlin Zha ◽  
Jian Wu ◽  
Deming Zhao

AbstractInvestigations of variations and causes of near-surface wind speed (NWS) further understanding of the atmospheric changes and improve the ability of climate analysis and projections. NWS varies on multiple temporal scales; however, the centennial-scale variability in NWS and associated causes over China remains unknown. In this study, we employ the European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth century reanalysis (ERA-20C) to study the centennial-scale changes in NWS from 1900–2010. Meanwhile, a forward stepwise regression algorithm is used to reveal the relationships between NWS and large-scale ocean-atmosphere circulations. The results show three unique periods in annual mean NWS over China from 1900–2010. The annual mean NWS displayed a decreasing trend of -0.87% decade-1 and -11.75% decade-1 from 1900–1925 and 1957–2010, respectively, which were caused by the decreases in the days with strong winds, with trends of -6.64 and -4.66 days decade-1, respectively. The annual mean NWS showed an upward trend of 55.47% decade-1 from 1926–1956, which was caused by increases in the days with moderate (0.43 days decade-1) and strong winds (23.55 days decade-1). The reconstructed wind speeds based on forward stepwise regression algorithm matched well with the original wind speeds; therefore, the decadal changes in NWS over China at centennial-scale were mainly induced by large-scale ocean-atmosphere circulations, with the total explanation power of 66%. The strongest explanation power was found in winter (74%), and the weakest explanation power was found in summer (46%).


2019 ◽  
Vol 11 (24) ◽  
pp. 3013 ◽  
Author(s):  
Cheng Jing ◽  
Xinliang Niu ◽  
Chongdi Duan ◽  
Feng Lu ◽  
Guodong Di ◽  
...  

Launched on 5 June 2019, the BuFeng-1 A/B twin satellites were part of the first Chinese global navigation satellite system reflectometry (GNSS-R) satellite mission. In this letter, a brief introduction of the BF-1 mission and its preliminary results of sea surface wind retrieval are presented. Empirical fully developed sea (FDS) geophysical model functions (GMFs) relating the normalized bistatic radar cross-section to the sea surface wind speed are proposed for the BF-1 GNSS-R instruments. The FDS GMFs are derived from the collocated BF-1 observations, the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data, and the advanced scatterometer (ASCAT) satellite observations. The preliminary tests reveal that the root-mean-square error (RMSE) between the derived wind speed and the reanalysis is 2.63 m/s for wind speeds in the range of 0.5–40.5 m/s. Further comparisons with the ASCAT observations and mooring buoys show that the RMSEs are 2.04 m/s and 1.77 m/s, respectively, at low-to-moderate wind speeds. This study demonstrates the effectiveness of BF-1 and provides a basis for the future GMF development of the BF-1 A/B mission.


Sign in / Sign up

Export Citation Format

Share Document