scholarly journals Cardiac involvement in cystic fibrosis evaluated using cardiopulmonary magnetic resonance

Author(s):  
Jakub Lagan ◽  
Josephine H. Naish ◽  
Joshua Bradley ◽  
Christien Fortune ◽  
Charlie Palmer ◽  
...  

AbstractCystic fibrosis (CF) transmembrane conductance regulator is expressed in myocardium, but cardiac involvement in CF remains poorly understood. The recent development of a combined cardiopulmonary magnetic resonance imaging technology allows for a simultaneous interrogation of cardiac and pulmonary structure and function. The aim of this study was to investigate myocardial manifestations in adults with CF, both in a stable state and during an acute respiratory exacerbation, and to investigate the relationship between cardiac and pulmonary disease. Healthy adult volunteers (n = 12) and adults with CF (n = 10) were studied using a multiparametric cardiopulmonary magnetic resonance protocol. CF patients were scanned during an acute respiratory exacerbation and re-scanned when stable. Stable CF was associated with left ventricular dilatation and hypertrophy (LVH; left ventricular mass: CF 59 ± 9 g/m2 vs. control 50 ± 8 g/m2; p = 0.028). LVH was predominantly driven by extracellular myocardial matrix expansion (extracellular matrix mass: CF 27.5 ± 3.4 g vs. control 23.6 ± 5.2 g; p = 0.006; extracellular volume [ECV]: CF 27.6 [24.7–29.8]% vs. control 24.8 [22.9–26.0]%; p = 0.030). Acute CF was associated with an acute reduction in left ventricular function (ejection fraction: acute 57 ± 3% vs. stable 61 ± 5%; p = 0.025) and there was a suggestion of myocardial oedema. Myocardial oedema severity was strongly associated with the severity of airflow limitation (r = − 0.726, p = 0.017). Multiparametric cardiopulmonary magnetic resonance technology allows for a simultaneous interrogation of cardiac and pulmonary structure and function. Stable CF is associated with adverse myocardial remodelling, including left ventricular systolic dilatation and hypertrophy, driven by myocardial fibrosis. CF exacerbation is associated with acute myocardial contractile dysfunction. There is also a suggestion of myocardial oedema in the acute period which is related to pulmonary disease severity.

2021 ◽  
Author(s):  
Guozhu Shao ◽  
Yukun Cao ◽  
Yue Cui ◽  
Xiaoyu Han ◽  
Jia Liu ◽  
...  

Abstract Background: The purpose of this study is to dynamically monitor the myocardial structure and function changes in diabetic mini-pigs by 1.5T cardiac magnetic resonance. Methods: Cardiac magnetic resonance (CMR) T1 mapping was performed in three male streptozotocin-induced diabetic mini-pigs. T1-mapping and ECV-mapping were acquired at basal, mid and apical segments. CMR feature-tracking (CMR-FT) is used to quantify left ventricle global longitudinal (LVGLS), circumferential (LVGCS) and radial strain(LVGRS). Epicardial adipose tissue (EAT) was evaluated using a commercially available software.Results: Left ventricular mass (LVM), myocardial T1 value and extracellular volume (ECV) value increased gradually after 3, 4.5 and 6 months of modeling, while LVGLS decreased gradually after 3 months of modeling(Modeling 3M VS 1.5M:LVM,34.0 ± 1.9 VS 26.4 ± 1.3,P=0.027;T1,1012.3 ± 9.6 VS 1002.2 ± 11.4, P=0.014; ECV,24.3 ± 1.6 VS 22.4 ± 1.6,P=0.014;GLS:-20.8 ± 1.3 VS -23.0 ± 1.6,P=0.014;Modeling 4.5M VS 3M:LVM,37.5 ± 1.3 VS 34.0 ± 1.9,P=0.005;T1, 1017.8 ± 9.5 VS 1012.3 ± 9.6, P<0.001;ECV,26.2 ± 1.5 VS 24.3 ± 1.6,P=0.037;GLS:-19.4 ± 1.4 VS -20.8 ± 1.3,P=0.016;Modeling 6M VS 4.5M:LVM,42.9 ± 1.6 ± 1.9 VS 37.5 ± 1.3,P=0.008;T1,1026.6 ± 10.2 VS 1017.8 ± 9.5, P=0.003;ECV,28.6 ± 1.8 VS 26.2 ± 1.5,P=0.016;GLS:-17.9 ± 1.1 VS -19.4 ± 1.4,P=0.019). EAT did not increase significantly until the sixth month (Modeling 6M VS 4.5M, EAT: 24.1 ± 3.1 VS 20.2 ± 2.4, P= 0.043).Conclusion: The progressive impairments in LV structure and myocardial deformation occurs in diabetic mini-pigs. T1 mapping and CMR-FT technology are promising to monitor abnormal changes of diabetic myocardium in early stage of diabetic cardiomyopathy.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Thiago Ferreira de Souza ◽  
Thiago Quinaglia ◽  
Ligia Antunes-Correa ◽  
Zsofia Drobni ◽  
Felipe Costa ◽  
...  

Introduction: There are limited data characterizing the effect of anthracyclines on right ventricular (RV) structure and function. Hypothesis: The goal of this study was to test the effect of anthracyclines on RV myocardial remodeling using cardiac magnetic resonance (CMR). Methods: This was a prospective CMR and serum biomarker study of 27 women with breast cancer (BC) (51.8±8.9 years) who underwent a CMR prior, and up to 3-times after anthracycline therapy (240 mg/m 2 ). The primary measure of interest was the RV extracellular volume (ECV) and cardiomyocyte mass index (1-ECV). Additional measures of interest were the left ventricular (LV) ECV, and the LV and RV mass. Biomarkers included high-sensitive troponin T, and creatinine-kinase MB isoenzyme (CKMB). Results: Before anthracyclines, all subjects had normal LV ejection fraction (EF) (69.4±3.6%) and RVEF (55.6±9%). At 351-700 days after anthracyclines, the LVEF and LV mass index declined to 58±6% (P<0.001) and 36±6g/m 2 (P<0.001). Similarly, the RVEF and RV mass index also decreased, reaching 46.3±6.8% at (222-350] days (P<0.001) and 8.13±2g/m 2 at (350-700] days (P<0.001) after anthracycline, respectively (Figure 1). At (350-700] days after anthracycline, both LV and RV ECV increased by 0.037 to 0.36±0.04 (P=0.004) and by 0.12 to 0.40±0.07 (P<0.001), respectively (Figure 2). In parallel, both the LV and RV cardiomyocyte mass also decreased after anthracyclines (Figure 2). Conclusions: In a prospective observational study among women with breast cancer, anthracyclines were associated with a decrease in the RV EF, an increase in the RV ECV and a decrease in the RV cardiomyocyte mass.


Circulation ◽  
1995 ◽  
Vol 92 (8) ◽  
pp. 2220-2225 ◽  
Author(s):  
Steven E. Lipshultz ◽  
E. John Orav ◽  
Stephen P. Sanders ◽  
Steven D. Colan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Zou ◽  
Rong Xu ◽  
Xiao Li ◽  
Hua-yan Xu ◽  
Zhi-gang Yang ◽  
...  

AbstractThis study evaluated the effects of mitral regurgitation (MR) on cardiac structure and function in left ventricular noncompaction (LVNC) patients. The clinical and cardiovascular magnetic resonance (CMR) data for 182 patients with noncompaction or hypertrabeculation from three institutes were retrospectively included. We analyzed the difference in left ventricular geometry, cardiac function between LVNC patients with and without MR. The results showed that patients with MR had a worse New York Heart Association (NYHA) class and a higher incidence of arrhythmia (P < 0.05). MR occurred in 48.2% of LVNC patients. Compared to LVNC patients without MR, the two-dimensional sphericity index, maximum/minimum end-diastolic ratio and longitudinal shortening in LVNC patients with MR were lower (P < 0.05), and the peak longitudinal strain (PLS) of the global and segmental myocardium were obviously reduced (P < 0.05). No significant difference was found in strain in LVNC patients with different degree of MR; end diastolic volume, end systolic volume, and global PLS were statistically associated with MR and NYHA class (P < 0.05), but the non-compacted to compacted myocardium ratio had no significant correlation with them. In conclusion, the presence of MR is common in LVNC patients. LVNC patients with MR feature more severe morphological and functional changes. Hypertrabeculation is not an important factor affecting structure and function at the heart failure stage.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 699.1-699
Author(s):  
A. Gil-Vila ◽  
G. Burcet ◽  
A. Anton-Vicente ◽  
D. Gonzalez-Sans ◽  
A. Nuñez-Conde ◽  
...  

Background:Antisynthetase syndrome (ASS) is characterized by inflammatory myopathy, interstitial lung disease, arthritis, mechanical hands and Raynaud phenomenon, among other features. Recent studies have shown that idiopathic inflammatory myopathies (IIM) may develop cardiac involvement, either ischemic (coronary artery disease) or inflammatory (myocarditis). We wonder if characteristic lung interstitial involvement (interstitial lung disease) that appears in patients with the ASS may also affect the myocardial interstitial tissue. New magnetic resonance mapping techniques could detect subclinical myocardial involvement, mainly as edema (increase extracellular volume in interstitium and extracellular matrix), even in the absence of visible late Gadolinium enhancement (LGE).Objectives:Our aim was to describe the presence of interstitial myocarditis in a group of patients with ASS.Methods:Cross-sectional, observational study performed in a tertiary care center. We included 13 patients diagnosed with ASS (7 male, 53%, mean (SD) age at diagnosis 56,8 years (±11,8)). The patients were consecutively selected from our outpatient myositis clinic. Myositis specific and associated antibodies were performed by means of line immunoblot (EUROIMMUN©). Cardiac magnetic resonance (CMR) was performed on all patients. The study protocol includes functional cine magnetic resonance and standard late gadolinium enhancement (LGE), as well as novel parametric T1 and T2 mapping sequences (modified look locker inversion recovery sequences - MOLLI) with extracellular volume (ECV) calculation 20 minutes after the injection of a gadolinium-based contrast material.Results:CMR could not be performed in one patient due to anxiety. All patients studied (12) had a normal biventricular function, without alteration of segmental contraction. A third (4 out of 12, 33%) of the studied patients showed elevated T2 myocardial values without focal LGE, half of them (2/4) with an elevated ECV, consistent with myocardial edema. Two patients with normal T2 values showed unspecific LGE focal patterns, one in the right ventricle union points and another with mild interventricular septum enhancement (Figure 1). None of the patients studied refer any cardiac symptomatology. All the four patients with T2 mapping alterations (100%) had interstitial lung involvement, but only 4 out of 8 (50%) of the rest ASS patients without T2 mapping positivity. The autoimmune profile was as follows: 10 anti-Jo1/Ro52, 1 anti-EJ/Ro52, 2 anti-PL12.Conclusion:Myocarditis, although subclinical, appears to be a feature in ASS patients. T1 and T2 mapping sequences might be valuable to detect and monitor subclinical cardiac involvement in these patients. The possibility that the same etiopathogenic mechanism may be involved in the interstitial tissue in lung and myocardium is raised. More studies must be done in order to assert the prevalence of myocarditis in ASS.References:[1]Dieval C et al. Myocarditis in Patients With Antisynthetase Syndrome: Prevalence, Presentation, and Outcomes. Medicine (Baltimore). 2015 Jul;94(26):e798.[2]Myhr KA, Pecini R. Management of Myocarditis in Myositis: Diagnosis and Treatment. Curr Rheumatol Rep. 2020 Jul 22; 22:49.[3]Sharma K, Orbai AM, Desai D, Cingolani OH, Halushka MK, Christopher-Stine L, Mammen AL, Wu KC, Zakaria S. Brief report: antisynthetase syndrome-associated myocarditis. J Card Fail. 2014 Dec;20(12):939-45.Figure 1.Cardiac magnetic resonance images from ASS patients.Disclosure of Interests:None declared


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


Sign in / Sign up

Export Citation Format

Share Document