An autonomous logger of permafrost soil temperature

2013 ◽  
Vol 49 (3-4) ◽  
pp. 256-258
Author(s):  
A. Yu. Nedel’ko
2011 ◽  
Vol 2 (1) ◽  
pp. 161-210 ◽  
Author(s):  
D. Wisser ◽  
S. Marchenko ◽  
J. Talbot ◽  
C. Treat ◽  
S. Frolking

Abstract. Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20% of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.


2016 ◽  
Author(s):  
P. Porada ◽  
A. Ekici ◽  
C. Beer

Abstract. Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is therefore crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH. We thereby take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the study region under current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme including a dynamic bryophyte and lichen model will be the basis for an improved future projection of land–atmosphere heat and carbon exchange.


2011 ◽  
Vol 2 (1) ◽  
pp. 121-138 ◽  
Author(s):  
D. Wisser ◽  
S. Marchenko ◽  
J. Talbot ◽  
C. Treat ◽  
S. Frolking

Abstract. Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.


2019 ◽  
Vol 59 (4) ◽  
pp. 517-528
Author(s):  
N. N. Voropay ◽  
M. V. Kiselev ◽  
A. A. Cherkashina

The territory of the study is the Tunkinsky intermountain basin (South-Western Baikal region, Republic of Buryatia) which belongs to the area of sporadic (island) distribution of permafrost. Soil temperature controls many biotic and abiotic processes in it, so it is important to monitor the freezing and thawing regimes in peat and mineral soils. The object of the study is coarse-humic cryogenic soils on sandy lacustrine-alluvial sediments. The first site was represented by natural coarse-humic cryogenic soils under spruce forest, while the second site was organized on the area where in 1960s the forest had been destroyed and the soils were ploughed. At the end of XX century, the arable lands were abandoned, and now they are covered with steppe grasses (the long fallow). Both sites are located on the permafrost. The atmospheric-soil measuring complex was used to study the state of both the perennial and seasonal permafrost at these two sites. The soil temperatures were measured in automatic mode with a time interval of 1 hour from July 1, 2013 to June 30, 2017 along the soil profile from the surface down to a depth of 320 cm. Anthropogenic interference on one of the sites resulted in changes in vegetation cover, the soil moisture as well as the morphological structure and granulometric composition of the upper part of the soil layer. This caused changes in the temperature regime of the permafrost and its degradation with lowering of its upper limit. The soil on the long fallow is better warmed up and cools down faster than it takes place under the spruce forest. As a result of this, the maximum annual temperature on the surface here is higher by 10 °C, while at a depth of 320 cm – by 5 °C, and the minimum annual temperature on the surface is lower by 7 °C, while at a depth of 320 cm – by 1 °C. On the anthropogenically disturbed area, the warm period (at the soil temperature above 0 °C) on the surface is, on the average, by 22 days longer than on the natural lot. These differences are observed at all depths. As a result, the perennial permafrost is retained under the spruce forest below 130 cm throughout the year (soil temperature −0.2 ÷ −0.9 °C), while on the fallow the zero isotherm during seasonal thawing falls much deeper 320 cm, and the soil in the layer of 240–320 cm warms up to 2–5 °C.


2016 ◽  
Vol 10 (5) ◽  
pp. 2291-2315 ◽  
Author(s):  
Philipp Porada ◽  
Altug Ekici ◽  
Christian Beer

Abstract. Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg). The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will be the basis for an improved future projection of land–atmosphere heat and carbon exchange.


2020 ◽  
Author(s):  
Mareike Wieczorek ◽  
Birgit Heim ◽  
Thomas Böhmer ◽  
Nadine Gebhardt ◽  
Annett Bartsch ◽  
...  

<p>Large scale analyses of climatic or ecological data are important to understand complex relationships. Often, such data are available in open repositories or national measurement programmes, others are only made available via the responsible researcher. However, merging data from various sources is often not straightforward, due to issues with the data itself or the metadata. Nevertheless, the application of such compilations offers various possibilities. In our working group, two large-scale compilations are currently constructed and applied. The Northern Hemispheric Pollen Compilation consists of data from NEOTOMA, European Pollen Database (EPD), PANGAEA and various authors. With the help of this compilation, we reconstruct climate and vegetation of large spatial and temporal scales. The circumpolar soil temperature dataset consist of data from the Global Terrestrial Network for Permafrost (GTN-P), Roshydromet, PANGAEA, Nordicana D and the National Science Foundation (NSF) Arctic Data Center. In its first version, the compilation has already been successfully applied to validate the ESA CCI Permafrost soil temperature map.</p><p>The various sources of errors and problems will be shown by the two compilations of (i) sedimentary pollen data and (ii) soil temperature data. The most general problem and error source are wrong or inaccurate coordinates. These errors arise out of coordinates provided with two decimals only, wrong conversion of DMS to decimal format, wrong coordinates etc. For most analyses, the most exact geographic position is a prerequisite, as e.g. lake size is an important parameter when reconstructing vegetation out of sedimentary pollen data. Sedimentary pollen records not located in a lake according to their given location thus need manual reposition according to the main researcher of a dataset or satellite maps. Further challenges concerning the pollen dataset pose various naming conventions or variable resolution in time. Furthermore, taxonomic resolution varies between datasets, making homogenization necessary.</p><p>But also for the soil temperature dataset, extensive checks were necessary, as even quality checked data comprise erroneous values. Furthermore, measured depths vary between datasets. For easy comparisons of soil temperature simulations against data, standardized depths were extracted. In a future step, interpolations between measured depths will help the end-users to extract the exactly needed depths and a compilation of available metadata on e.g. surrounding vegetation and borehole stratigraphy shall be provided.</p><p>All compilations will be made available on public repositories.</p>


2011 ◽  
Vol 8 (3) ◽  
pp. 5387-5426 ◽  
Author(s):  
R. M. Nagare ◽  
R. A. Schincariol ◽  
W. L. Quinton ◽  
M. Hayashi

Abstract. The effects of freezing on soil temperature and water movement were monitored in four peat Mesocosms subjected to bidirectional freezing. Temperature gradients were applied by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves and from the total water content of frozen core samples collected at the end of freezing cycle. This study illustrates how differences in initial water content influence the hydrologic functions of active layer in permafrost terrains covered with thick peat during soil freezing. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period, appeared to have moved upwards during freezing. Effects of temperature on soil matric potential, at least in the initial freezing period, appear to drive such movement as seen from analysis of soil freezing curves. Vapour movement from warmer to colder regions also appears to contribute in moisture movement. Frost propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.


Sign in / Sign up

Export Citation Format

Share Document