Automation of Geometric Simulation and Strength Calculation of Construction of Constant Force Support

Author(s):  
A. E. Lebedev ◽  
I. S. Gudanov ◽  
E. A. Vinogradova ◽  
A. A. Vatagin
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1253-1259
Author(s):  
Minghui Wang ◽  
Hongliu Yu

Clamping devices with constant force or pressure are desired in medical device, such as hemostatic forceps and the artificial sphincter, to prevent soft tissues from injures due to overloading. It is easily obtained by stretching an SMA wire. However, studies with SMA bending round bar have seldom been reported before. This paper studied constant force characteristic of C-shaped round bar with shape memory alloys. Optimization designs of the components were carried out with computational simulation. Numerical results show that the phenomenon of constant force strongly depends on contour curve shape and geometric dimensions of the C-shaped round bar of SMA component.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


2021 ◽  
Vol 11 (6) ◽  
pp. 2685
Author(s):  
Guojin Pei ◽  
Ming Yu ◽  
Yaohui Xu ◽  
Cui Ma ◽  
Houhu Lai ◽  
...  

A compliant constant-force actuator based on the cylinder is an important tool for the contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the traditional proportional–integral–derivative (PID) method for constant force control does not work so well. In this paper, an improved PID control method combining a backpropagation (BP) neural network and the Smith predictor is proposed. Through MATLAB simulation and experimental validation, the results show that the proposed method can shorten the maximum overshoot and the adjustment time compared with traditional the PID method.


1994 ◽  
Vol 116 (3) ◽  
pp. 937-943 ◽  
Author(s):  
J. G. Jenuwine ◽  
A. Midha

A means of synthesis of single-input and multiple-output port mechanisms for specified energy absorption is formulated for multiple precision points. The synthesis presented makes use of an extension of the loop closure method which includes expressions for energy absorption by linear spring elements. The configuration considered locates spring elements at two output ports of a multi-loop, planar mechanism. Economies realized for the symmetric mechanism are discussed for both one- and two-plane symmetry. Synthesis examples are included for both the general and symmetric mechanism. Special applications presented include synthesis of a constant force mechanism and synthesis of a mechanism suited to the energy absorption requirements of an automotive crashworthiness system.


1993 ◽  
Vol 64 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Marc Quirynen ◽  
Ann Callens ◽  
Daniel van Steenberghe ◽  
Marken Nys

2015 ◽  
Author(s):  
Yue Xu ◽  
Jinwei Chen ◽  
Yueting Chen ◽  
Zhihai Xu ◽  
Huajun Feng ◽  
...  

2006 ◽  
Vol 128 (27) ◽  
pp. 8803-8812 ◽  
Author(s):  
Craig C. Jolley ◽  
Stephen A. Wells ◽  
Brandon M. Hespenheide ◽  
Michael F. Thorpe ◽  
Petra Fromme

Sign in / Sign up

Export Citation Format

Share Document