scholarly journals RIC in COVID-19—a Clinical Trial to Investigate Whether Remote Ischemic Conditioning (RIC) Can Prevent Deterioration to Critical Care in Patients with COVID-19

Author(s):  
Sean M. Davidson ◽  
Kishal Lukhna ◽  
Diana A. Gorog ◽  
Alan D. Salama ◽  
Alejandro Rosell Castillo ◽  
...  

Abstract Purpose Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. “RIC in COVID-19” is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. Methods A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. Conclusions The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. Trial Registration NCT04699227, registered January 7th, 2021.

2021 ◽  
Author(s):  
Ian Tietjen ◽  
Joel Cassel ◽  
Emery T. Register ◽  
Xiang Yang Zhou ◽  
Troy E. Messick ◽  
...  

AbstractAntivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host ACE2 receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (–)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (–)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 μM in contrast to an IC50 of 28.3 μM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index = 257.3). When assessed against the USA-WA1/2020 variant, (–)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect assays (IC50 = 10.2 μM) without cytotoxicity. Notably, (–)- hopeaphenol also inhibited two emerging variants of concern originating from the United Kingdom (B.1.1.7) and South Africa (B.1.351) in both cytopathic effect and spike-containing pseudovirus assays with similar (B.1.1.7) or improved (B.1.351) efficacies over the USA- WA1/2020 variant. These results identify (–)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants including those with increased infectivity and/or reduced susceptibility to existing vaccines.ImportanceSARS-CoV-2 antivirals are needed to supplement existing vaccine efforts and target emerging viral variants with increased infectivity or reduced susceptibility to existing vaccines. Here we show that (–)-hopeaphenol, a naturally-occurring stilbenoid compound, in addition to its analogues vatalbinoside A and vaticanol B, inhibit SARS-CoV-2 by blocking the interaction of the viral spike protein with the cellular ACE2 entry receptor. Importantly, in addition to inhibiting the early USA-WA1/2020 SARS-CoV-2 variant, hopeaphenol also inhibits emerging variants of concern including B.1.1.7 (“United Kingdom variant”) and B.1.351 (“South Africa variant”), with improved efficacy against B.1.351. (–)-Hopeaphenol therefore represents a new antiviral lead against infection from multiple SARS-CoV-2 variants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
K. A. Schmidtke ◽  
K. G. Drinkwater

Abstract Background Human hygiene behaviours influence the transmission of infectious diseases. Changing maladaptive hygiene habits has the potential to improve public health. Parents and teachers can play an important role in disinfecting surface areas and in helping children develop healthful handwashing habits. The current study aims to inform a future intervention that will help parents and teachers take up this role using a theoretically and empirically informed behaviour change model called the Capabilities-Opportunities-Motivations-Behaviour (COM-B) model. Methods A cross-sectional online survey was designed to measure participants’ capabilities, opportunities, and motivations to [1] increase their children’s handwashing with soap and [2] increase their cleaning of surface areas. Additional items captured how often participants believed their children washed their hands. The final survey was administered early in the coronavirus pandemic (May and June 2020) to 3975 participants from Australia, China, India, Indonesia, Saudi Arabia, South Africa, and the United Kingdom. Participants self-identified as mums, dads, or teachers of children 5 to 10 years old. ANOVAs analyses were used to compare participant capabilities, opportunities, and motivations across countries for handwashing and surface disinfecting. Multiple regressions analyses were conducted for each country to assess the predictive relationship between the COM-B components and children’s handwashing. Results The ANOVA analyses revealed that India had the lowest levels of capability, opportunity, and motivation, for both hand hygiene and surface cleaning. The regression analyses revealed that for Australia, Indonesia, and South Africa, the capability component was the only significant predictor of children’s handwashing. For India, capability and opportunity were significant. For the United Kingdom, capability and motivation were significant. Lastly, for Saudi Arabia all components were significant. Conclusions The discussion explores how the Behaviour Change Wheel methodology could be used to guide further intervention development with community stakeholders in each country. Of the countries assessed, India offers the greatest room for improvement, and behaviour change techniques that influence people’s capability and opportunities should be prioritised there.


2021 ◽  
Vol 118 (37) ◽  
pp. e2104235118 ◽  
Author(s):  
Ethan Porter ◽  
Thomas J. Wood

The spread of misinformation is a global phenomenon, with implications for elections, state-sanctioned violence, and health outcomes. Yet, even though scholars have investigated the capacity of fact-checking to reduce belief in misinformation, little evidence exists on the global effectiveness of this approach. We describe fact-checking experiments conducted simultaneously in Argentina, Nigeria, South Africa, and the United Kingdom, in which we studied whether fact-checking can durably reduce belief in misinformation. In total, we evaluated 22 fact-checks, including two that were tested in all four countries. Fact-checking reduced belief in misinformation, with most effects still apparent more than 2 wk later. A meta-analytic procedure indicates that fact-checks reduced belief in misinformation by at least 0.59 points on a 5-point scale. Exposure to misinformation, however, only increased false beliefs by less than 0.07 points on the same scale. Across continents, fact-checks reduce belief in misinformation, often durably so.


2020 ◽  
Author(s):  
Emanuele Andreano ◽  
Giulia Piccini ◽  
Danilo Licastro ◽  
Lorenzo Casalino ◽  
Nicole V. Johnson ◽  
...  

ABSTRACTTo investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.One Sentence SummaryThree mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.


Sign in / Sign up

Export Citation Format

Share Document