scholarly journals Floquet modes and stability analysis of periodic orbit-attitude solutions along Earth–Moon halo orbits

2021 ◽  
Vol 133 (7) ◽  
Author(s):  
Francesco Colombi ◽  
Andrea Colagrossi ◽  
Michèle Lavagna

AbstractFuture space programmes pose some interesting research problems in the field of non-Keplerian dynamics, being the Moon and the cislunar space central in the proposed roadmap for the future space exploration. In these regards, the deployment of a cislunar space station on a non-Keplerian orbit in the lunar vicinity is a fundamental milestone to be achieved. The paper investigates the natural orbit-attitude dynamics and the attitude stabilisation of coupled motions for extended bodies in the Earth–Moon system. The discussion is carried out analysing the phase space of natural dynamics, constituted by both the orbital and the rotational periodic motions of a spacecraft in cislunar orbits. Floquet theory is applied to periodic orbit-attitude solutions in lunar proximity, to characterise their attitude stability properties and their attitude manifolds, which are discussed and analysed focusing on their dynamical features applicable to cislunar environment. Attitude stabilisation methods are proposed and developed, with particular attention to spin-stabilised solutions. Periodic orbit-attitude dynamics are studied to highlight possible favourable conditions that may be exploited to host a cislunar space station with a simplified control action. The focus of the analysis is dedicated to halo orbits and near-rectilinear halo orbit in the circular restricted three-body problem Earth–Moon system.

Author(s):  
Chris Nie

A new era of spaceflight dawned following the conclusion of the United States and Russian space race. This new era has been marked by the design, assembly, and operation of one of the greatest engineering feats mankind has accomplished, the International Space Station (ISS). The ISS is comprised of hundreds of thousands of kilograms of material built on the ground and transported to space for assembly. It houses an artificial atmosphere to sustain life in outer space and has been continually inhabited for over 15 years. This chapter describes the technical complexity of the ISS, the background of how it was assembled, its major systems, details of crew life onboard, commercial usage of the resource, and examples of mishaps that have occurred during the ISS's operation. The technical details of the ISS provide a glimpse into what future space stations that might orbit the Moon and Mars will resemble.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Takafumi Suzuki ◽  
Akira Uruno ◽  
Akane Yumoto ◽  
Keiko Taguchi ◽  
Mikiko Suzuki ◽  
...  

AbstractSpace flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS). After 31 days in the ISS, all flight mice returned safely to Earth. Transcriptome and metabolome analyses revealed that the stresses of space travel evoked ageing-like changes of plasma metabolites and activated the Nrf2 signaling pathway. Especially, Nrf2 was found to be important for maintaining homeostasis of white adipose tissues. This study opens approaches for future space research utilizing murine gene knockout-disease models, and provides insights into mitigating space-induced stresses that limit the further exploration of space by humans.


2005 ◽  
Vol 4 (3-4) ◽  
pp. 259-268 ◽  
Author(s):  
S. Babidge ◽  
J. Cokley ◽  
F. Gordon ◽  
E. Louw

As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.


Sign in / Sign up

Export Citation Format

Share Document