Cellulose nanofiber/carboxymethyl cellulose blends as an efficient coating to improve the structure and barrier properties of paperboard

Cellulose ◽  
2017 ◽  
Vol 24 (7) ◽  
pp. 3001-3014 ◽  
Author(s):  
S. M. Mazhari Mousavi ◽  
E. Afra ◽  
M. Tajvidi ◽  
D. W. Bousfield ◽  
M. Dehghani-Firouzabadi
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


2019 ◽  
Vol 21 (10) ◽  
pp. 2073-2079
Author(s):  
Aneta Gumowska ◽  
Grzegorz Kowaluk ◽  
Jalel Labidi ◽  
Eduardo Robles

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 499
Author(s):  
Łukasz Łopusiewicz ◽  
Paweł Kwiatkowski ◽  
Emilia Drozłowska ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
...  

Preparation of biodegradable packaging materials and valorisation of food industry residues to achieve “zero waste” goals is still a major challenge. Herein, biopolymer-based (carboxymethyl cellulose—CMC) bioactive films were prepared by the addition, alone or in combination, of carvacrol and fungal melanin isolated from champignon mushroom (Agaricus bisporus) agro-industrial residues. The mechanical, optical, thermal, water vapour, and UV-Vis barrier properties were studied. Fourier-transform infrared (FT-IR) spectroscopy studies were carried out to analyse the chemical composition of the resulting films. Antibacterial, antifungal, and antioxidant activities were also determined. Both CMC/melanin and CMC/melanin/carvacrol films showed some antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of melanin increased the UV-blocking, mechanical, water vapour barrier, and antioxidant properties without substantially reducing the transparency of the films. The addition of carvacrol caused loss of transparency, however, composite CMC/melanin/carvacrol films showed excellent antioxidant activity and enhanced mechanical strength. The developed bioactive biopolymer films have a good potential to be green bioactive alternatives to plastic films in food packaging applications.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 247
Author(s):  
Tieqiang Liang ◽  
Lijuan Wang

A low-water-sensitive Artemisia sphaerocephala Krasch. gum (ASKG) based intelligent film was developed. Red cabbage extracts (RCE) was selected as a natural pH-sensitive indicator, and anionic cellulose nanofiber (ACNF) was added as a hydrophobic and locking host. The zeta potential, rheology, Fourier-transform infrared spectroscopy, X-ray diffractometry, and release results indicated that the RCE was locked by the ACNF via electrostatic interactions, moreover, broke the original complicated network and ordered arrangement of polymer molecules in the developed intelligent films. RCE addition decreased the tensile strength, oxygen, and water vapor barrier properties and light transmission of the developed intelligent films, while increasing the elongation at break. The films could respond to buffer solutions and NH3 through different color changes. The developed intelligent film was hydrophobic, which could precisely detect the freshwater shrimp freshness in real time via color changes, which indicated that the films have potential in intelligent packaging and gas-sensing label fields.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 831 ◽  
Author(s):  
Mohan Turup Pandurangan ◽  
Krishnan Kanny

In recent years, much attention was focused on developing green materials and fillers for polymer composites. This work is about the development of such green nanofiller for reinforcement in epoxy polymer matrix. A cellulose nanofiber (CNF)-filled epoxy polymer nanocomposites was prepared in this work. The effect of CNF on curing, thermal, mechanical, and barrier properties of epoxy polymer is evaluated in this study. CNF were extracted from banana fiber using acid hydrolysis method and then filled in epoxy polymer at various concentration (0–5 wt.%) to form CNF-filled epoxy nanocomposites. The structure and morphology of the CNF-filled epoxy nanocomposites were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Curing studies shows CNF particles acts as a catalytic curing agent with increased cross-link density. This catalytic effect of CNF particles has positively affected tensile, thermal (thermogravimetry analysis and dynamic mechanical analysis) and water barrier properties. Water uptake test of nanocomposites was studied to understand the barrier properties. Overall result also shows that the CNF can be a potential green nanofiller for thermoset epoxy polymer with promising applications ahead.


2014 ◽  
Vol 131 (16) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sylvain Galland ◽  
Yves Leterrier ◽  
Tommaso Nardi ◽  
Christopher J. G. Plummer ◽  
Jan Anders E. Månson ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2399
Author(s):  
Bich Nam Jung ◽  
Hyun Wook Jung ◽  
DongHo Kang ◽  
Gi Hong Kim ◽  
Jin Kie Shim

Since the plastic-based multilayer films applied to food packaging are not recyclable, it is necessary to develop easily recyclable single materials. Herein, polypropylene (PP)-based cellulose nanofiber (CNF)/nanoclay nanocomposites were prepared by melt-mixing using a fixed CNF content of 1 wt %, while the nanoclay content varied from 1 to 5 wt %. The optimum nanoclay content in the PP matrix was found to be 3 wt % (PCN3), while they exhibited synergistic effects as a nucleating agent. PCN3 exhibited the best mechanical properties, and the tensile and flexural moduli were improved by 51% and 26%, respectively, compared to PP. In addition, the oxygen permeability was reduced by 28%, while maintaining the excellent water vapor permeability of PP. The improvement in the mechanical and barrier properties of PP through the production of PP/CNF/nanoclay hybrid nanocomposites suggested their possible application in the field of food packaging.


Sign in / Sign up

Export Citation Format

Share Document