scholarly journals Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 499
Author(s):  
Łukasz Łopusiewicz ◽  
Paweł Kwiatkowski ◽  
Emilia Drozłowska ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
...  

Preparation of biodegradable packaging materials and valorisation of food industry residues to achieve “zero waste” goals is still a major challenge. Herein, biopolymer-based (carboxymethyl cellulose—CMC) bioactive films were prepared by the addition, alone or in combination, of carvacrol and fungal melanin isolated from champignon mushroom (Agaricus bisporus) agro-industrial residues. The mechanical, optical, thermal, water vapour, and UV-Vis barrier properties were studied. Fourier-transform infrared (FT-IR) spectroscopy studies were carried out to analyse the chemical composition of the resulting films. Antibacterial, antifungal, and antioxidant activities were also determined. Both CMC/melanin and CMC/melanin/carvacrol films showed some antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of melanin increased the UV-blocking, mechanical, water vapour barrier, and antioxidant properties without substantially reducing the transparency of the films. The addition of carvacrol caused loss of transparency, however, composite CMC/melanin/carvacrol films showed excellent antioxidant activity and enhanced mechanical strength. The developed bioactive biopolymer films have a good potential to be green bioactive alternatives to plastic films in food packaging applications.

2021 ◽  
Vol 3 (1) ◽  
pp. 32-58
Author(s):  
Barbara E. Teixeira-Costa ◽  
Cristina T. Andrade

In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.


2021 ◽  
Author(s):  
Yamanappagouda Amaregouda ◽  
Kantharaju Kamanna ◽  
Tilak Gasti ◽  
Vijay Kumbar

Abstract Herein, we described novel biogenic preparation of the CuO nanorods and its surface modification with L-alanine amino acid accelerated by microwave irradiation. The effect of surface functionalized CuO nanorods on the polyvinyl alcohol/carboxymethyl cellulose film physico-mechanical properties were investigated through various characterization techniques. The tensile strength was improved from 28.58 ± 0.73 MPa to 43.40 ± 0.93 MPa, UV shielding ability and barrier to the water vapors were highly enhanced when PVA/CMC matrices filled with 8 wt% of CuO-L-alanine. In addition, the prepared films exhibited acceptable overall migration limit and readily undergoes soil burial degradation. Nevertheless, CuO-L-alanine incorporated films showed potent antioxidant activity against DPPH radicals and had high antibacterial activity against Staphylococcus aureus and Escherichia coli, and antifungal activity against Candida albicans and Candida tropicalis. Furthermore, the nanocomposite films showed negligible cytotoxic effect on HEK293 and Caco-2 cell lines. In these contexts, the developed nanocomposite films can be implementing as an active food packaging material.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1418 ◽  
Author(s):  
Wei Li ◽  
Kewang Zheng ◽  
Hujian Chen ◽  
Shirong Feng ◽  
Wei Wang ◽  
...  

The combined effects of nano titanium dioxide (TiO2-N) and clove oil (CO) on the physico-chemical, biological and structural properties of chitosan (CH)/starch (ST) films were investigated by using a solvent casting method. Results indicated that the incorporation of TiO2-N could improve the compactness of the film, increase the tensile strength (TS) and antioxidant activity, and decrease the water vapour permeability (WVP). As may be expected, the incorporation of CO into the film matrix decreased TS but increased the hydrophobicity as well as water vapour barrier antimicrobial and antioxidant properties. Fourier-transform infrared spectroscopy (FTIR) data supported intermolecular interactions between TiO2-N, CO and the film matrix. Use of a scanning electron microscope (SEM) showed that TiO2-N and CO were well dispersed and emulsified in the film network. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves demonstrated that TiO2-N and CO were well embedded in the film matrix, hence this blend film system could provide new formulation options for food packaging materials in the future.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2518
Author(s):  
Gislaine Ferreira Nogueira ◽  
Rafael Augustus de Oliveira ◽  
José Ignacio Velasco ◽  
Farayde Matta Fakhouri

Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Luyu Mei ◽  
Liuxin Shi ◽  
Xiuli Song ◽  
Su Liu ◽  
Qiang Cheng ◽  
...  

In this study, carboxymethyl cellulose (CMC) films containing 1%, 2%, and 3% Chinese fir essential oil (CFEO) were prepared. The mechanical, optical, physical, microstructural, thermal stability and antimicrobial properties of the films were studied. A traditional steam distillation method was applied for CFEO extraction, in which 35 volatile components were identified. The research results showed that the CMC film mixed with 1% CFEO had the highest tensile strength (TS) and elongation at break (EB), whereas the flexibility was decreased under higher concentrations of CFEO. However, the film’s degree of transparency under controlled humidity did not decrease with an increase in CFEO concentration; thus, the sensory evaluation was not adversely effect. Furthermore, the thickness and the water solubility (WS) of film increased after the addition of CFEO. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results indicated that the thermal stability of the CMC-CFEO films improved. Moreover, the composite films showed excellent inhibitory effects toward Gram-positive bacterias and Penicillium citrinum. The treatments of grapes with CMC + 1% CFEO resulted in the best properties during storage. CMC-CFEO film can be a candidate for food packaging due to its excellent performances.


2021 ◽  
Vol 22 (8) ◽  
pp. 4017
Author(s):  
Anjum Hamid Rather ◽  
Taha Umair Wani ◽  
Rumysa Saleem Khan ◽  
Bishweshwar Pant ◽  
Mira Park ◽  
...  

Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.


Sign in / Sign up

Export Citation Format

Share Document