scholarly journals On the role of N-methylmorpholine-N-oxide (NMMO) in the generation of elemental transition metal precipitates in cellulosic materials

Cellulose ◽  
2021 ◽  
Author(s):  
Thomas Rosenau ◽  
Antje Potthast ◽  
Hubert Hettegger ◽  
Markus Bacher ◽  
Martina Opietnik ◽  
...  

AbstractSeveral literature reports describe the role of aqueous solutions of N-methylmorpholine-N-oxide monohydrate (NMMO) as a suitable medium for the generation of transition metal (nano)particles in or on cellulosic materials and further elaborate its role as a co-reactant of the transition metal salts that are reduced to the elemental metal. However, this would assign NMMO the role of a reductant, which is in contradiction of its obvious oxidative nature. In the present study, the exemplary cases of silver, gold, and platinum salts as the precursors of the respective metal (nano)particles in aqueous NMMO/cellulose mixtures were investigated. Naturally, NMMO did not act as a reducing agent in any case—this role was taken over by the frequently used NMMO stabilizer propyl gallate, or by cellulose itself, into which carbonyl and carboxyl groups were introduced. Also, hypochlorite—produced intermediately from chloride ions and subsequently undergoing disproportionation into chloride and chlorate—or transient N-methylene(morpholinium) ions generated from NMMO, which are in turn oxidized to formyl morpholide, can act as the corresponding reductants while the metal ions are reduced, depending on the reaction conditions. Apart from providing interesting mechanistic insights, the study points to the importance of a precise description of the composition of the chemical systems used, as well as the importance of seemingly inert auxiliaries, which turned out to be essential co-reactants in the metal (nano)particle generation. Graphic abstract

Author(s):  
Leonard Laroque ◽  
Abhishek Jain ◽  
Tie Wang ◽  
Karthik Chinnathambi ◽  
Ganapathiraman Ramanath ◽  
...  

Application of voltage across a liquid-dielectric interface resulting in the change of fluid contact angle is known as electrowetting on dielectric (EWOD) effect [1]. EWOD actuation is one of the most preferred techniques to move liquid at microscale due to relatively low voltages, low currents and power consumption requirements, and the absence of electrolysis. Our recent work has shown that nanofluids containing semiconductor nanoparticles exhibit a very strong EWOD effect [2, 3]. In particular, in the tested voltage range of 0 to 60 V, nanofluids loaded with molecularly-capped bismuth telluride nanoparticles show enhanced stability and increased actuation range of contact angle change. Developing a fundamental understanding of the role of nanostructure inclusions in controlling and potentially enhancing the EWOD effect would pave the way for the efficient use of EWOD with nanofluids in a wide range or microfluidic applications. Here we extend the studies on the EWOD behavior of nanofluids, to a system containing noble metal nano particles. In this abstract we report the preliminary results of the electro-wetting studies on nanofluids containing silver nano particles.


Author(s):  
Vinay Deep Punetha ◽  
Sunil Dhali ◽  
Anita Rana ◽  
Neha Karki ◽  
Himani Tiwari ◽  
...  

: Natural products have widely been used in applications ranging from antibacterial, antiviral, antifungal and various other medicinal applications. Use of these natural products was recognized way before the establishment of basic chemistry behind the disease and the chemistry of plant metabolites. After the establishment of plant chemistry various new horizons evolved, and application of the natural products breached the orthodox limitations. In one such interdisciplinary area, use of plant materials in the synthesis of nano particles (NPs) has exponentially emerged. This advancement has offered various environment friendly methods where hazardous chemicals are completely replaced by natural products in the sophisticated and hectic synthesis processes. This review is an attempt to understand the mechanism of metal nano particles synthesis using plant materials. It includes details on the role of plant’s secondary metabolites in the synthesis of nano particles including the mechanism of action. In addition, use of these nano materials has widely been discussed along with the possible mechanism behind their antimicrobial and catalytic action.


2017 ◽  
Vol 20 (11-12) ◽  
pp. 1053-1061
Author(s):  
Laura I. Rossi ◽  
Claudio O. Kinen ◽  
Rita Hoyos de Rossi

2019 ◽  
Author(s):  
Shiori Date ◽  
Kensei Hamasaki ◽  
Karen Sunagawa ◽  
Hiroki Koyama ◽  
Chikayoshi Sebe ◽  
...  

<div>We report here a catalytic, Markovnikov selective, and scalable synthetic method for the synthesis of saturated sulfur heterocycles, which are found in the structures of pharmaceuticals and natural products, in one step from an alkenyl thioester. Unlike a potentially labile alkenyl thiol, an alkenyl thioester is stable and easy to prepare. The powerful Co catalysis via a cobalt hydride hydrogen atom transfer and radical-polar crossover mechanism enabled simultaneous cyclization and deprotection. The substrate scope was expanded by the extensive optimization of the reaction conditions and tuning of the thioester unit.</div>


Sign in / Sign up

Export Citation Format

Share Document