Formation of metal-containing nanoparticles in polymer matrix. Computer simulation of clusterization kinetics during the solid-phase thermal decomposition of metal-containing precursors

2005 ◽  
Vol 67 (1) ◽  
pp. 63-71 ◽  
Author(s):  
A. S. Rozenberg ◽  
A. A. Rozenberg ◽  
G. I. Dzardimalieva ◽  
A. D. Pomogailo
Author(s):  
Jako S. Eensalu ◽  
Kaia Tõnsuaadu ◽  
Jasper Adamson ◽  
Ilona Oja Acik ◽  
Malle Krunks

AbstractThermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III) (1), a precursor for Sb2S3 thin films synthesized from an acidified aqueous solution of SbCl3 and KS2COCH2CH3, was monitored by simultaneous thermogravimetry, differential thermal analysis and evolved gas analysis via mass spectroscopy (TG/DTA-EGA-MS) measurements in dynamic Ar, and synthetic air atmospheres. 1 was identified by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) measurements, and quantified by NMR and elemental analysis. Solid intermediates and final decomposition products of 1 prepared in both atmospheres were determined by X-ray diffraction (XRD), Raman spectroscopy, and FTIR. 1 is a complex compound, where Sb is coordinated by three ethyldithiocarbonate ligands via the S atoms. The thermal degradation of 1 in Ar consists of three mass loss steps, and four mass loss steps in synthetic air. The total mass losses are 100% at 800 °C in Ar, and 66.8% at 600 °C in synthetic air, where the final product is Sb2O4. 1 melts at 85 °C, and decomposes at 90–170 °C into mainly Sb2S3, as confirmed by Raman, and an impurity phase consisting mostly of CSO 2 2− ligands. The solid-phase mineralizes fully at ≈240 °C, which permits Sb2S3 to crystallize at around 250 °C in both atmospheres. The gaseous species evolved include CS2, C2H5OH, CO, CO2, COS, H2O, SO2, and minor quantities of C2H5SH, (C2H5)2S, (C2H5)2O, and (S2COCH2CH3)2. The thermal decomposition mechanism of 1 is described with chemical reactions based on EGA-MS and solid intermediate decomposition product analysis.


2001 ◽  
Vol 58 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Paola González Audino ◽  
Susana A Licastro ◽  
Eduardo Zerba

2006 ◽  
Vol 71 (3) ◽  
pp. 235-249 ◽  
Author(s):  
Alexandru Popa ◽  
Viorel Sasca ◽  
Mircea Stefanescu ◽  
Erne Kis ◽  
Radmila Marinkovic-Neducin

In order to obtain highly dispersed heteropolyacids (HPAs) species, H3PMo12O40 and H4PVMo11O40 were supported on various supports: silica (Aerosil - Degussa and Romsil types) and TiO2. The structure and thermal decomposition of supported and unsupported HPAs were followed by different techniques (TGA-DTA, FTIR, XRD, low temperature nitrogen adsorption, scanning electron microscopy). All the supported HPAs were prepared by impregnation using the incipient wetness technique with a 1:1 mixture of water-ethanol. Samples were prepared with different concentrations to examine the effect of loading on the thermal behavior of the supported acid catalysts. The thermal stability was evaluated with reference to the bulk solid acids and mechanical mixtures. After deposition on silica types supports, an important decrease in thermal stability was observed on the Romsil types and a small decrease on the Aerosil type. The stability of the heteropolyacids supported on titania increased due to an anion-support interaction, as the thermal decomposition proceeded in two steps. The structure of the HPAs was not totally destroyed at 450 ?C as some IR bands were still preserved. A relatively uniform distribution of HPAs on the support surface was observed for all compositions of the active phase. No separate crystallites of solid phase HPAs were found in the SEM images.


2021 ◽  
Vol 64 (10) ◽  
pp. 728-735
Author(s):  
I. A. Rybenko ◽  
O. I. Nokhrina ◽  
I. D. Rozhikhina ◽  
M. A. Golodova ◽  
I. E. Khodosov

The article presents results of theoretical and experimental studies of the processes of iron solid-phase reduction from an iron-containing concentrate obtained as a result of hydrometallurgical dressing of ferromanganese and polymetallic manganese-containing ores with coals of grades D (long-flame) and 2B (brown). The method of thermodynamic modeling using TERRA software complex was used to study the reducing properties of hydrocarbons by calculating equilibrium compositions in the temperature range of 373 - 1873 K. The authors obtained the dependences of compositions and volume of the gas phase formed as a result of the release of volatile components during heating on the temperature for the coals of the grades under consideration. As a result of thermodynamic modeling, the optimal temperatures and consumption are determined, which ensure the complete iron reduction from an iron-containing concentrate. The results of experimental studies were obtained by modern research methods using laboratory and analytical equipment, as well as methods of statistical processing. Results of the coals analysis carried out using the Setaram LabSys Evo thermal analyzer showed that the process of thermal decomposition of coals of the studied grades proceeds according to general laws. The process of thermal decomposition of long-flame coal proceeds less intensively than of brown coal. The results of an experimental study of the processes of thermal decomposition of reducing agents have shown that volumes of the gas phases, formed when coals are heated to a temperature of 1173 K in an argon atmosphere, practically coincide with the calculated values. As a result of thermodynamic modeling and experimental study, the optimal consumption of D and 2B grades of coal is determined at a temperature of 1473 K. The best reducing agent with a minimum specific consumption is long-flame coal of D grade. When determining the optimal amount of reducing agent in charge mixtures during the study of metallization processes, it was found that with an excess of reducing agent, it is possible to achieve almost complete extraction (98 - 99 %) of iron from the concentrate.


Sign in / Sign up

Export Citation Format

Share Document