scholarly journals Establishment of a pancreatic β cell proliferation model in vitro and a platform for diabetes drug screening

2013 ◽  
Vol 66 (4) ◽  
pp. 687-697 ◽  
Author(s):  
Jing Jia ◽  
Xiaoli Liu ◽  
Yongxia Chen ◽  
Xiaoliang Zheng ◽  
Linglan Tu ◽  
...  
2022 ◽  
Author(s):  
Ada Admin ◽  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


Diabetes ◽  
2022 ◽  
Author(s):  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
Yue Liu ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3259
Author(s):  
So-young Park ◽  
Boyoung Kim ◽  
Yun Kyung Lee ◽  
Sueun Lee ◽  
Jin Mi Chun ◽  
...  

Diabetes mellitus is a chronic metabolic disease, and its progression leads to serious complications. Although various novel therapeutic approaches for diabetes mellitus have developed in the last three decades, its prevalence has been rising more rapidly worldwide. Silk-related materials have been used as anti-diabetic remedies in Oriental medicine and many studies have shown the effects of silk fibroin (SF) in both in vitro and in vivo models. In our previous works, we reported that hydrolyzed SF improved the survival of HIT-T15 cells under high glucose conditions and ameliorated diabetic dyslipidemia in a mouse model. However, we could not provide a precise molecular mechanism. To further evaluate the functions of hydrolyzed SF on the pancreatic β-cell, we investigated the effects of hydrolyzed SF on the pancreatic β-cell proliferation and regeneration in the mouse model. Hydrolyzed SF induced the expression of the proliferating cell nuclear antigen (PCNA) and reduced the apoptotic cell population in the pancreatic islets. Hydrolyzed SF treatment not only induced the expression of transcription factors involved in the pancreatic β-cell regeneration in RT-PCR results but also increased neurogenin3 and Neuro D protein levels in the pancreas of those in the group treated with hydrolyzed SF. In line with this, hydrolyzed SF treatment generated insulin mRNA expressing small cell colonies in the pancreas. Therefore, our results suggest that the administration of hydrolyzed SF increases the pancreatic β-cell proliferation and regeneration in C57BL/KsJ-Leprdb/db mice.


2022 ◽  
Author(s):  
Ada Admin ◽  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


2011 ◽  
pp. 5-10
Author(s):  
Huu Dang Tran

The incretins are peptide hormones secreted from the gut in response to food. They increase the secretion of insulin. The incretin response is reduced in patients with type 2 diabetes so drugs acting on incretins may improve glycaemic control. Incretins are metabolised by dipeptidyl peptidase, so selectively inhibiting this enzyme increases the concentration of circulating incretins. A similar effect results from giving an incretin analogue that cannot be cleaved by dipeptidyl peptidase. Studies have identified other actions including improvement in pancreatic β cell glucose sensitivity and, in animal studies, promotion of pancreatic β cell proliferation and reduction in β cell apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yi Pan ◽  
GuangMing Li ◽  
HengGao Zhong ◽  
MeiJuan Chen ◽  
TingTing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document