Heterogeneous movement by a small non-migratory stream fish

Author(s):  
Lucas De Fries ◽  
Mateus Camana ◽  
Sandra Maria Hartz ◽  
Fernando Gertum Becker
Keyword(s):  
Author(s):  
Logan J. Sleezer ◽  
Paul L. Angermeier ◽  
Emmanuel A. Frimpong ◽  
Bryan L. Brown
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
Huei-Shin Chang ◽  
Yu-Ling Wu ◽  
Hui-Ju Chang ◽  
...  

AbstractThe feasibility of delivering mitochondria intranasally so as to bypass the blood–brain barrier in treating Parkinson's disease (PD), was evaluated in unilaterally 6-OHDA-lesioned rats. Intranasal infusion of allogeneic mitochondria conjugated with Pep-1 (P-Mito) or unconjugated (Mito) was performed once a week on the ipsilateral sides of lesioned brains for three months. A significant improvement of rotational and locomotor behaviors in PD rats was observed in both mitochondrial groups, compared to sham or Pep-1-only groups. Dopaminergic (DA) neuron survival and recovery > 60% occurred in lesions of the substantia nigra (SN) and striatum in Mito and P-Mito rats. The treatment effect was stronger in the P-Mito group than the Mito group, but the difference was insignificant. This recovery was associated with restoration of mitochondrial function and attenuation of oxidative damage in lesioned SN. Notably, P-Mito suppressed plasma levels of inflammatory cytokines. Mitochondria penetrated the accessory olfactory bulb and doublecortin-positive neurons of the rostral migratory stream (RMS) on the ipsilateral sides of lesions and were expressed in striatal, but not SN DA neurons, of both cerebral hemispheres, evidently via commissural fibers. This study shows promise for intranasal delivery of mitochondria, confirming mitochondrial internalization and migration via RMS neurons in the olfactory bulb for PD therapy.


2021 ◽  
Vol 22 (14) ◽  
pp. 7664
Author(s):  
Katarzyna Bartkowska ◽  
Krzysztof Turlejski ◽  
Beata Tepper ◽  
Leszek Rychlik ◽  
Peter Vogel ◽  
...  

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10–22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew’s brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


2021 ◽  
Author(s):  
Travis C. Haas ◽  
Graham Derryberry ◽  
David C. Heins ◽  
Michael J. Blum

2010 ◽  
Vol 58 (3) ◽  
pp. 182 ◽  
Author(s):  
Swati Mittal ◽  
Usha Kumari ◽  
Pinky Tripathi ◽  
Ajay Kumar Mittal

The surface architecture of the epidermis on the outer surface of the operculum (OE) and the epithelium on the inner surface of the operculum (EISO) of Garra lamta was examined by scanning electron microscopy. The surface appeared smooth on the OE and wavy on the EISO. A wavy epithelium is considered to facilitate an increase in its stretchability, during the expansion of the branchial chamber. The OE and the EISO were covered by a mosaic pavement of epithelial cells with characteristic patterns of microridges and microbridges. Interspersed between the epithelial cells were mucous goblet cell pores, which were not significantly different in number in the OE and the EISO. Nevertheless, their surface area in the EISO was significantly higher than in the OE. This could be an adaptation to secrete higher amounts of mucus on the EISO for keeping the branchial chamber lining clean, avoiding clogging, the increased slipperiness reducing friction from water flow and increased efficiency in protecting against microbial attachments. Rounded bulges on the OE and the EISO were associated with mucous goblet cells. The absence of the taste buds in the EISO, in contrast to the OE, suggests that their function in the branchial chamber may not be of much significance in this fish. Breeding tubercles on the OE are believed to facilitate better contact between the male and female during breeding.


Sign in / Sign up

Export Citation Format

Share Document