Bacillus and Pseudomonas spp. strains induce a response in phenolic profile and enhance biosynthesis of antioxidant enzymes in Agrobacterium tumefaciens infected tomato plants

2020 ◽  
Vol 157 (2) ◽  
pp. 269-280
Author(s):  
H. Djellout ◽  
A. Raio ◽  
H. Boutoumi ◽  
Z. Krimi
Author(s):  
Vitor Quintela Sousa ◽  
Walter Fernando Serra Messias ◽  
Ynglety Cascaes Pereira ◽  
Breno Ricardo Serrão da Silva ◽  
Elaine Maria Silva Guedes Lobato ◽  
...  

2015 ◽  
Vol 4 (2) ◽  
pp. 96-99
Author(s):  
Tatyana Stepanovna Kolmykova ◽  
Ekaterina Vladimirovna Klokova ◽  
Elvera Shagidulovna Sharkaeva

Activity of the antioxidant system is one of the mechanisms for the protection of plants against adverse environmental factors. Catalase - a primary antioxidant enzymes. Her change may serve as an indicator of plant resistance to stress. Studied catalase activity in tomato plants of different varieties under the action of low temperatures and cytokinin 6-BAP preparation. The object of investigation used 24- and 27-day-old tomato plant varieties Podarochnyi, Patrice, Volgogradskyi. Found that under the action of low temperatures, the decrease in positive catalase activity: 10-30% at 10 C and 40-60% at a temperature of 3 C as compared with non-refrigerated plants. Less resistant to hyperthermia were plant varieties Patrice. With increasing length of vegetation at a temperature of 25 C in 27-day-old tomato plants resulted in a minor increase in the activity of the enzyme. After the end of the cooling observed recovery of enzyme activity only at grades Podarochnyi and Patrice. This indicates that the indicated tomato varieties possess a high ability to restore metabolic processes. Using 6-regulator cytokinin BAP increased catalase activity in tomato plants as prolonged or momentary cooling. Especially responsive to the drug were plant varieties Patrice and Volgogradskyi. And 6-BAP helped repair catalase activity in 27-day-old plants in the aftereffect of cold stress. Were more sensitive plant varieties Podarochnyi.


2021 ◽  
Author(s):  
April M MacIntyre ◽  
Valerian Meline ◽  
Zachary Gorman ◽  
Steven P Augustine ◽  
Carolyn J Dye ◽  
...  

Ralstonia solanacearum causes plant bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in host produced trehalose. Water stressed plants accumulate the disaccharide trehalose, which increases drought tolerance via abscisic acid (ABA) signaling networks. Because infected plants have reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. Transcriptomic responses of susceptible vs. resistant tomato plants to R. solanacearum infection revealed differential expression of drought-associated genes, including those involved in ABA and trehalose metabolism. ABA was enriched in xylem sap from R. solanacearum-infected plants. Treating roots with ABA lowered stomatal conductance and reduced R. solanacearum stem colonization. Treating roots with trehalose increased ABA in xylem sap and reduced plant water use by reducing stomatal conductance and temporarily improving water use efficiency. Further, trehalose-treated plants were more resistant to bacterial wilt disease. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent defense genes, increased xylem sap levels of SA and other antimicrobial compounds, and increased wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic resistance. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggests that that R. solanacearum-infected tomato plants produce more trehalose to improve water use efficiency and increase wilt disease resistance. In turn, R. solanacearum degrades trehalose as a counter-defense.


2020 ◽  
Vol 18 (4) ◽  
pp. e10SC05
Author(s):  
Ivana Stankovic ◽  
Ana Vucurovic ◽  
Katarina Zecevic ◽  
Branka Petrovic ◽  
Danijela Ristic ◽  
...  

Aim of study: To report the occurrence of Pepino mosaic virus (PepMV) on tomato in Serbia and to genetically characterize Serbian PepMV isolates.Area of study: Tomato samples showing virus-like symptoms were collected in the Bogojevce locality (Jablanica District, Serbia).Material and methods: Collected tomato samples were assayed by DAS-ELISA using antisera against eight economically important or quarantine tomato viruses. Three selected isolates of naturally infected tomato plants were mechanically transmitted to tomato ‘Novosadski jabučar’ seedlings. For confirmation of PepMV infection, RT-PCR was performed using specific primers PepMV TGB F/PepMV UTR R. Maximum-likelihood phylogenetic tree was constructed with 47 complete CP gene sequences of PepMV to determine the genetic relationship of Serbian PepMV isolates with those from other parts of the world.Main results: The results of DAS-ELISA indicated the presence of PepMV in all tested samples. Mechanically inoculated ‘Novosadski jabučar’ seedlings expressed yellow spots and light and dark green patches, bubbling, and curled leaves. All tested tomato plants were RT-PCR positive for the presence of PepMV. The CP sequence analysis revealed that the Serbian PepMV isolates were completely identical among themselves and shared the highest nucleotide identity of 95.1% (99.2% aa identity) with isolate from Spain (FJ263341). Phylogenetic analysis showed clustering of the Serbian PepMV isolates into CH2 strain, but they formed separate subgroup within CH2 strain.Research highlights: This is the first data of the presence of PepMV in protected tomato production in Serbia. Considering increased incidence and rapid spread in Europe, the presence of PepMV on tomato could therefore represent serious threat to this valuable crop in Serbia.


2003 ◽  
Vol 93 (12) ◽  
pp. 1485-1495 ◽  
Author(s):  
S. Chakraborty ◽  
P. K. Pandey ◽  
M. K. Banerjee ◽  
G. Kalloo ◽  
C. M. Fauquet

The biological and molecular properties of Tomato leaf curl Gujarat virus from Varanasi, India (ToLCGV-[Var]) were characterized. ToLCGV-[Var] could be transmitted by grafting and through whitefly transmission in a persistent manner. The full-length genome of DNA-A and DNA-B of ToLCGV-[Var] was cloned in pUC18. Sequence analysis revealed that DNA-A (AY190290) is 2,757 bp and DNA-B (AY190291) is 2,688 bp in length. ToLCGV-[Var] could infect and cause symptoms in tomato, pepper, Nicotiana benthamiana, and N. tabacum when partial tandem dimeric constructs of DNA-A and DNA-B were co-inoculated by particle bombardment. DNA-A alone also is infectious, but symptoms were milder and took longer to develop. ToLCGV-Var virus can be transmitted through sap inoculation from infected tomato plants to the above-mentioned hosts causing the same symptoms. Open reading frames (ORFs) in both DNA-A and DNA-B are organized similarly to those in other begomoviruses. DNA-A and DNA-B share a common region of 155 bp with only 60% sequence identity. DNA-B of ToLCGV-[Var] shares overall 80% identity with DNA-B of Tomato leaf curl New Delhi virus-Severe (ToLCNDV-Svr) and 75% with ToLCNDV-[Lucknow] (ToLCNDV-[Luc]). Comparison of DNA-A sequence with different begomoviruses indicates that ToLCGV-[Var] shares 84% identity with Tomato leaf curl Karnataka virus (ToLCKV) and 66% with ToLCNDV-Svr. ToLCGV-[Var] shares a maximum of 98% identity with another isolate of the same region (ToLCGV-[Mir]; AF449999) and 97% identity with one isolate from Gujarat (ToLCGV-[Vad]; AF413671). All three viruses belong to the same species that is distinct from all the other geminivirus species described so far in the genus Begomovirus of the family Geminiviridae. The name Tomato leaf curl Gujarat virus is proposed because the first sequence was taken from an isolate of Gujarat, India.


2001 ◽  
Vol 91 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Murad Ghanim ◽  
Shai Morin ◽  
Henryk Czosnek

Whiteflies (Bemisia tabaci, biotype B) were able to transmit Tomato yellow leaf curl virus (TYLCV) 8 h after they were caged with infected tomato plants. The spread of TYLCV during this latent period was followed in organs thought to be involved in the translocation of the virus in B. tabaci. After increasing acquisition access periods (AAPs) on infected tomato plants, the stylets, the head, the midgut, a hemolymph sample, and the salivary glands dissected from individual insects were subjected to polymerase chain reaction (PCR) without any treatment; the presence of TYLCV was assessed with virus-specific primers. TYLCV DNA was first detected in the head of B. tabaci after a 10-min AAP. The virus was present in the midgut after 40 min and was first detected in the hemolymph after 90 min. TYLCV was found in the salivary glands 5.5 h after it was first detected in the hemolymph. Subjecting the insect organs to immunocapture-PCR showed that the virus capsid protein was in the insect organs at the same time as the virus genome, suggesting that at least some TYLCV translocates as virions. Although females are more efficient as vectors than males, TYLCV was detected in the salivary glands of males and of females after approximately the same AAP.


2005 ◽  
Vol 95 (6) ◽  
pp. 659-663 ◽  
Author(s):  
W. T. S. D. Premachandra ◽  
C. Borgemeister ◽  
E. Maiss ◽  
D. Knierim ◽  
H.-M. Poehling

Ceratothripoides claratris, the predominant thrips species on tomato in Thailand, was tested for vector competence and efficiency to transmit Capsicum chlorosis virus (CaCV) (isolate AIT) to tomato. The efficiency of adult-stage transmission was influenced by the larval stage at which virus was acquired. Adult C. claratris showed 69% transmission efficiency after acquiring the virus as freshly emerged (<1 h) first-instar larvae. However, when just molted (<1 h) second-instar larvae acquired the virus, the percentage of adult transmitters significantly decreased (48%). Transmission efficiency of up to 47% was detected with second-instar larvae of C. claratris which had acquired the virus as freshly emerged first-instar larvae. Transmission efficiency did not significantly differ between adult males and females, irrespective of the larval stage at which the virus was acquired. Highest transmission efficiency for CaCV was recorded in adult C. claratris derived from second-instar larvae collected from infected tomato plants in a greenhouse. Lowest transmission efficiency was observed in adults directly collected from infected tomato plants in the greenhouse. The spread of CaCV on tomato plants in greenhouses showed a close association with thrips infestations.


Sign in / Sign up

Export Citation Format

Share Document