Enhancing Fusarium crown rot resistance of durum wheat by introgressing chromosome segments from hexaploid wheat

Euphytica ◽  
2011 ◽  
Vol 186 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Ma ◽  
C. Y. Zhang ◽  
Y. X. Liu ◽  
G. J. Yan ◽  
C. J. Liu
Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1788-1794 ◽  
Author(s):  
Noel L. Knight ◽  
Bethany Macdonald ◽  
Mark W. Sutherland

Fusarium crown rot is a significant disease of durum wheat (Triticum turgidum L. var. durum), which exhibits high levels of disease susceptibility. The most extreme symptom of crown rot is a prematurely senescing culm that typically fails to set grain. Individual crown rot-affected durum wheat plants displaying both nonsenescent and prematurely senescent culms were harvested to compare visual discoloration, Fusarium pseudograminearum biomass, and vascular colonization in culm sections sampled at three different heights above the crown. Field samples of EGA Bellaroi were collected at Wellcamp, QLD, in 2011, 2012, 2013, and 2014, and of Hyperno at Narrabri, NSW, in 2014. Prematurely senescent culms exhibited greater visual discoloration, F. pseudograminearum biomass, and vascular colonization than nonsenescent culms in each year they were examined. The extent of these differences varied between environments and timing of collection in each year. Vascular colonization initially occurred in xylem vessels and spread into phloem tissues as disease severity increased. The increased presence of hyphae in vascular bundles of prematurely senescing culms provides strong evidence for the hypothesis that restriction of water and nutrient movement in a diseased culm is a key factor in crown rot severity.


2020 ◽  
Author(s):  
Gururaj Kadkol ◽  
Jess Meza ◽  
Steven Simpfendorfer ◽  
Steve Harden ◽  
Brian Cullis

AbstractTolerance to the cereal disease Fusarium crown rot (FCR) was investigated in a set of 34 durum wheat genotypes, with Suntop, (bread wheat) and EGA Bellaroi (durum) as tolerant and intolerant checks, in a series of replicated field trials over four years with inoculated (FCR-i) and non-inoculated (FCR-n) plots of the genotypes. The genotypes included conventional durum lines and lines derived from crossing durum with 2-49, a bread wheat line with the highest level of partial resistance to FCR. A split plot trial design was chosen to optimize the efficiency for the prediction of FCR tolerance for each genotype. A multi-environment trial (MET) analysis was undertaken which indicated that there was good repeatability of FCR tolerance across years. Based on an FCR tolerance index, Suntop was the most tolerant genotype and EGA Bellaroi was very intolerant, but many durum wheats had FCR tolerance indices which were comparable to Suntop. These included some conventional durum lines, V101030, TD1702, V11TD013*3X-63 and DBA Bindaroi, as well as genotypes from crosses with 2-49 (V114916 and V114942). The correlation between FCR tolerance and FCR-n yield predictions was moderately negative indicating it could be somewhat difficult to develop high yielding FCR-tolerant genotypes. However, FCR tolerance showed a positive correlation with FCR-i yield predictions in seasons of high disease expression indicating it could be possible to screen for FCR tolerance using only FCR-i treatments. These results are the first demonstration of genetic diversity in durum germplasm for FCR tolerance and they provide a basis for breeding for this trait.


2012 ◽  
Vol 160 (7-8) ◽  
pp. 412-417 ◽  
Author(s):  
Yaxi Liu ◽  
Jun Ma ◽  
Wei Yan ◽  
Guijun Yan ◽  
Meixue Zhou ◽  
...  

BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhi Zheng ◽  
Jian Ma ◽  
Jiri Stiller ◽  
Qiang Zhao ◽  
Qi Feng ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0240766
Author(s):  
Gururaj Pralhad Kadkol ◽  
Jess Meza ◽  
Steven Simpfendorfer ◽  
Steve Harden ◽  
Brian Cullis

Tolerance to the cereal disease Fusarium crown rot (FCR) was investigated in a set of 34 durum wheat genotypes, with Suntop, (bread wheat) and EGA Bellaroi (durum) as tolerant and intolerant controls, in a series of replicated field trials over four years with inoculated (FCR-i) and non-inoculated (FCR-n) plots of the genotypes. The genotypes included conventional durum lines and lines derived from crossing durum with 2–49, a bread wheat genotype with the highest level of partial resistance to FCR. A split plot trial design was chosen to optimize the efficiency for the prediction of FCR tolerance for each genotype. A multi-environment trial (MET) analysis was undertaken which indicated that there was good repeatability of FCR tolerance across years. Based on an FCR tolerance index, Suntop was the most tolerant genotype and EGA Bellaroi was very intolerant, but some durum wheats had FCR tolerance indices which were comparable to Suntop. These included some conventional durum genotypes, V101030, TD1702, V11TD013*3X-63 and DBA Bindaroi, as well as genotypes from crosses with 2–49 (V114916 and V114942). The correlation between FCR tolerance and FCR-n yield predictions was moderately negative indicating it could be somewhat difficult to develop FCR-tolerant genotypes that are high yielding under low disease pressure. However, FCR tolerance showed a positive correlation with FCR-i yield predictions in seasons of high disease expression indicating it could be possible to screen for FCR tolerance using only FCR-i treatments. These results are the first demonstration of genetic diversity in durum germplasm for FCR tolerance and they provide a basis for breeding for this trait.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zayneb Kthiri ◽  
Maissa Ben Jabeur ◽  
Myriam Machraoui ◽  
Samia Gargouri ◽  
Khaled Hiba ◽  
...  

Abstract Background Fusarium crown rot is one of the major diseases that cause significant yield losses of wheat, and Trichoderma strains were known as an effective biocontrol agent. Main body The aim of this study was to evaluate the potential of coating durum wheat seeds of the cultivar “Karim” with 3 different Tunisian strains of Trichoderma sp. (S.INAT, SIO1, SIO2) and the Trichoderma-based commercial product Trianum-T22 on seed germination, seedling growth, and plant defense response against the pathogen Fusarium culmorum. The strains were identified using molecular tools based on sequencing ITS region of ribosomal DNA. The results confirmed at 99% of homology that the strains were T. harzianum. Under controlled conditions, the coating seeds were released with 400 μl of spore suspension at 107 spores/ml. The seed coating with Trianum-P, and S.INAT showed the highest seed germination rates ranging from 85 to 90% while S.IO1 and S.IO2 presented the lowest germination rates with 66 and 68%, respectively. At 20 days post-infection (dpi) with F. culmorum, the treated plants with S.INAT and Trianum-T22 reduced the disease incidence by 53.59 and 51.79%, respectively than the control. Besides, S.INAT induced two-folds the phenolic compounds level compared to infected control. Further, the peroxidase activity was enhanced by 50% in average since 10 dpi in plants treated with S.INAT and SIO2 than the control. Conclusion The results suggest that seed coating with T. harzianum S.INAT was a promising tool for crop production and protection under field conditions due to both direct antagonist activity and the indirect growth promotion. This strain seems to induce the systemic resistance of plants against foot crown rot disease.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 579
Author(s):  
Ljiljana Kuzmanović ◽  
Gloria Giovenali ◽  
Roberto Ruggeri ◽  
Francesco Rossini ◽  
Carla Ceoloni

Today wheat cultivation is facing rapidly changing climate scenarios and yield instability, aggravated by the spreading of severe diseases such as Fusarium head blight (FHB) and Fusarium crown rot (FCR). To obtain productive genotypes resilient to stress pressure, smart breeding approaches must be envisaged, including the exploitation of wild relatives. Here we report on the assessment of the breeding potential of six durum wheat-Thinopyrum spp. recombinant lines (RLs) obtained through chromosome engineering. They are characterized by having 23% or 28% of their 7AL chromosome arm replaced by a “nested” alien segment, composed of homoeologous group 7 chromosome fractions from Th. ponticum and Th. elongatum (=7el1L + 7EL) or from different Th. ponticum accessions (=7el1L + 7el2L). In addition to the 7el1L genes Lr19 + Yp (leaf rust resistance, and yellow pigment content, respectively), these recombinant lines (RLs) possess a highly effective QTL for resistance to FHB and FCR within their 7el2L or 7EL portion. The RLs, their null segregants and well-adapted and productive durum wheat cultivars were evaluated for 16 yield-related traits over two seasons under rainfed and irrigated conditions. The absence of yield penalties and excellent genetic stability of RLs was revealed in the presence of all the alien segment combinations. Both 7el2L and 7EL stacked introgressions had positive impacts on source and sink yield traits, as well as on the overall performance of RLs in conditions of reduced water availability. The four “nested” RLs tested in 2020 were among the top five yielders, overall representing good candidates to be employed in breeding programs to enhance crop security and safety.


Sign in / Sign up

Export Citation Format

Share Document