scholarly journals Noninertial effects on nonrelativistic topological quantum scattering

2017 ◽  
Vol 49 (8) ◽  
Author(s):  
H. F. Mota ◽  
K. Bakke
2016 ◽  
Vol 31 (11) ◽  
pp. 1650074 ◽  
Author(s):  
Herondy Mota

We consider the quantum scattering problem of a relativistic particle in (2 + 1)-dimensional cosmic string spacetime under the influence of a nontrivial boundary condition imposed on the solution of the Klein–Gordon equation. The solution is then shifted as consequence of the nontrivial boundary condition and the role of the phase shift is to produce an Aharonov–Bohm-like effect. We examine the connection between this phase shift and the electromagnetic and gravitational analogous of the Aharonov–Bohm effect and compare the present results with previous ones obtained in the literature, also considering non-relativistic cases.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2014 ◽  
Author(s):  
Sankar Das Sarma ◽  
Michael Freedman ◽  
Victor Galitski ◽  
Chetan Nayak ◽  
Kirill Shtengel

1990 ◽  
Vol 55 (8) ◽  
pp. 1907-1919
Author(s):  
Jiří Pancíř ◽  
Ivana Haslingerová

A semiempirical quantum-chemical topological method is applied to the study of the fcc (112) surfaces of Ni, Pt, Pd, Rh, and Ir and the nondissociative as well as dissociative chemisorption of carbon monoxide on them. On Ni, dissociative chemisorption is preferred to linear capture, whereas on Pd and Pt, linear capture is preferred although dissociative chemisorption is also feasible. On Rh and, in particular, on Ir, dissociative chemisorption is energetically prohibited. The high dissociative ability of the Ni surface can be ascribed to a rather unusual charge alteration and to the degeneracy of the frontier orbitals. Negative charges at the surface level are only found on the Ni and Pt surfaces whereas concentration of positive charges is established on the Rh and Ir surfaces; the Pd surface is nearly uncharged. Metals with negatively charged surfaces seem to be able to dissociate molecules of carbon monoxide. It is demonstrated that CO adsorption can take place on all metal surface sites, most effectively in the valley of the step. In all the cases studied, the attachment to the surface is found to be energetically more favourable for the carbon than for the oxygen.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiangxu Li ◽  
Jiaxi Liu ◽  
Stanley A. Baronett ◽  
Mingfeng Liu ◽  
Lei Wang ◽  
...  

AbstractThe discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.


Author(s):  
M. Zahid Hasan ◽  
Guoqing Chang ◽  
Ilya Belopolski ◽  
Guang Bian ◽  
Su-Yang Xu ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


Sign in / Sign up

Export Citation Format

Share Document