Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses

2018 ◽  
Vol 84 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Syed Shameer ◽  
T. N. V. K. V. Prasad
Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 529 ◽  
Author(s):  
Agnese Bellabarba ◽  
Camilla Fagorzi ◽  
George C. diCenzo ◽  
Francesco Pini ◽  
Carlo Viti ◽  
...  

Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield.


2021 ◽  
Author(s):  
Rafia Younas ◽  
Shiza Gul ◽  
Rehan Ahmad ◽  
Ali Raza Khan ◽  
Mumtaz Khan ◽  
...  

Global climate change is leading to a series of frequent onset of environmental stresses such as prolonged drought periods, dynamic precipitation patterns, heat stress, and cold stress on plants and commercial crops. The increasing severity of such stresses is not only making agriculture and related economic sector vulnerable but also negatively influences plant diversity patterns. The global temperature of planet Earth has risen to 1.1°C since the last 19th century. An increase in surface temperature leads to an increase in soil temperature which ultimately reduces water content in the soil, thereby, reducing crop growth and yield. Moreover, this situation is becoming more intense for agricultural practices in arid and semi-arid regions. To overcome climatically induced stresses, acclimatization of plant species via bioinoculation with Plant Growth Promoting Rhizobacteria (PGPR) is becoming an effective approach. The PGPR are capable of colonizing rhizosphere (exophytes) as well as plant organs (endophytes), where they trigger an accumulation of osmolytes for osmoregulation or improving gene expression of heat or cold stress proteins, or by signaling the synthesis of phytohormones, metabolites, proteins, and antioxidants to scavenge reactive oxygen species. Thus, PGPR exhibiting multiple plant growth-promoting traits can be employed via bioinoculants to improve the plant’s tolerance against unfavorable stress conditions.


2017 ◽  
Vol 5 (13) ◽  
Author(s):  
Stéphane Compant ◽  
Jonathan Gerbore ◽  
Livio Antonielli ◽  
Aline Brutel ◽  
Monika Schmoll

ABSTRACT Trichoderma harzianum is one of the most beneficial microorganisms applied on diverse crops against biotic and abiotic stresses and acts also as a plant growth-promoting fungus. Here, we report the genome of T. harzianum B97, originating from a French agricultural soil and used as a biofertilizer that can tolerate abiotic stresses.


2021 ◽  
Vol 22 (6) ◽  
pp. 3154
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Shih-Hsun Hung ◽  
Eugene Huang ◽  
Chieh-Chen Huang

To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20–50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human’s increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.


Sign in / Sign up

Export Citation Format

Share Document