New insights into the evolution and expression dynamics of invertase gene family in Solanum lycopersicum

2020 ◽  
Vol 92 (2) ◽  
pp. 205-217
Author(s):  
Huawei Wei ◽  
Songlin Chai ◽  
Lei Ru ◽  
Luzhao Pan ◽  
Yuan Cheng ◽  
...  
2020 ◽  
Vol 34 (1) ◽  
pp. 319-329
Author(s):  
Tao Wu ◽  
Zheng Liu ◽  
Li Yang ◽  
Yinsheng Cheng ◽  
Junfan Tu ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


2015 ◽  
Vol 14 (3) ◽  
pp. 7811-7820 ◽  
Author(s):  
W.S. Zai ◽  
L.X. Miao ◽  
Z.L. Xiong ◽  
H.L. Zhang ◽  
Y.R. Ma ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Liming Wang ◽  
Yuexia Zheng ◽  
Shihui Ding ◽  
Qing Zhang ◽  
Youqiang Chen ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


1997 ◽  
Vol 20 (6) ◽  
pp. 672-677 ◽  
Author(s):  
L. H. PRATT ◽  
M.-M. CORDONNIER-PRATT ◽  
P. M. KELMENSON ◽  
G. I. LAZAROVA ◽  
T. KUBOTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document