scholarly journals The adjuvant activity of two urea derivatives on cytokinins: an example of serendipitous dual effect

Author(s):  
Federica Brunoni ◽  
Enrico Rolli ◽  
Eugenia Polverini ◽  
Lukáš Spíchal ◽  
Ada Ricci

AbstractThe aim of this study was to investigate the action spectrum of two urea derivatives, the 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and the 1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU). In order to evaluate a possible adjuvant activity on cytokinins the compounds alone or in the simultaneous presence of different cytokinins were assayed either on in vitro typical cytokinin-related bioassays, or on in planta interaction with cytokinin signal transduction pathway. The compounds ability to activate the cytokinin receptor CRE1/AHK4 was studied either by a heterologous bacterial assay or by a competitive binding assay and docking simulations were performed with the crystal structure of the same receptor. Then, owing to their chemical structure which resembles that of urea-type cytokinins, the ability of 5- and 6-BDPU to inhibit the activity of cytokinin oxidase/dehydrogenase of Zea mays (ZmCKX1) was investigated and docking simulations were performed as well. Accordingly to the experimental results, we speculate that BDPUs could show a dual activity: the blocking of the conformational re-adaption of CRE1/AHK4 receptor maintaining the cytokinin inside its binding pocket, thus possibly enhancing its kinase action; the inhibition of cytokinin oxidase/dehydrogenase activity thus possibly preventing its cleavage of natural cytokinins with isoprenoid side chain. Graphic abstract

2021 ◽  
Author(s):  
P. Bernát Szabó ◽  
Francesc Sabanés Zariquiey ◽  
Juan José Nogueira

Genetics ◽  
1991 ◽  
Vol 128 (1) ◽  
pp. 29-35
Author(s):  
D N Arvidson ◽  
M Shapiro ◽  
P Youderian

Abstract The Escherichia coli trpR gene encodes tryptophan aporepressor, which binds the corepressor ligand, L-tryptophan, to form an active repressor complex. The side chain of residue valine 58 of Trp aporepressor sits at the bottom of the corepressor (L-tryptophan) binding pocket. Mutant trpR genes encoding changes of Val58 to the other 19 naturally occurring amino acids were made. Each of the mutant proteins requires a higher intracellular concentration of tryptophan for activation of DNA binding than wild-type aporepressor. Whereas wild-type aporepressor is activated better by 5-methyltryptophan (5-MT) than by tryptophan, Ile58 and other mutant aporepressors prefer tryptophan to 5-MT as corepressor, and Ala58 and Gly58 prefer 5-MT much more strongly than wild-type aporepressor in vivo. These mutant aporepressors are the first examples of DNA-binding proteins with altered specificities of cofactor recognition.


2004 ◽  
Vol 82 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Julia Xu ◽  
Mary A.A McRae ◽  
Scott Harron ◽  
Beatrice Rob ◽  
Reuben E Huber

The interactions between Na+ (and K+) and Asp-201 of β-galactosidase were studied. Analysis of the changes in Km and Vmax showed that the Kd for Na+ of wild type β-galactosidase (0.36 ± 0.09 mM) was about 10× lower than for K+ (3.9 ± 0.6 mM). The difference is probably because of the size and other physical properties of the ions and the binding pocket. Decreases of Km as functions of Na+ and K+ for oNPG and pNPG and decreases of the Ki of both shallow and deep mode inhibitors were similar, whereas the Km and Ki of substrates and inhibitors without C6 hydroxyls remained constant. Thus, Na+ and K+ are important for binding galactosyl moieties via the C6 hydroxyl throughout catalysis. Na+ and K+ had lesser effects on the Vmax. The Vmax of pNPF and pNPA (substrates that lack a C6 hydroxyl) did not change upon addition of Na+ or K+, showing that the catalytic effects are also mediated via the C6 hydroxyl. Arrhenius plots indicated that Na+, but not K+, caused k3 (degalactosylation) to increase. Na+ also caused the k2 (galactosylation) with oNPG, but not with pNPG, to increase. In contrast, K+ caused the k2 values with both oNPG and pNPG to increase. Na+ and K+ mainly altered the entropies of activation of k2 and k3 with only small effects on the enthalpies of activation. This strongly suggests that only the positioning of the substrate, transition states, and covalent intermediate are altered by Na+ and K+. Further evidence that positioning is important was that substitution of Asp-201 with a Glu caused the Km and Ki values to increase significantly. In addition, the Kd values for Na+ or K+ were 5 to 8 fold higher. The negative charge of Asp-201 was shown to be vital for Na+ and K+ binding. Large amounts of Na+ or K+ had no effect on the very large Km and Ki values of D201N-β-galactosidase and the Vmax values changed minimally and in a linear rather than hyperbolic way. D201F-β-galactosidase, with a very bulky hydrophobic side chain in place of Asp, essentially obliterated all binding and catalysis.Key words: β-galactosidase, sodium, potassium, binding, aspartic acid.


2006 ◽  
Vol 188 (11) ◽  
pp. 4051-4056 ◽  
Author(s):  
René M. de Jong ◽  
Kor H. Kalk ◽  
Lixia Tang ◽  
Dick B. Janssen ◽  
Bauke W. Dijkstra

ABSTRACT Haloalcohol dehalogenases are bacterial enzymes that cleave the carbon-halogen bond in short aliphatic vicinal haloalcohols, like 1-chloro-2,3-propanediol, some of which are recalcitrant environmental pollutants. They use a conserved Ser-Tyr-Arg catalytic triad to deprotonate the haloalcohol oxygen, which attacks the halogen-bearing carbon atom, producing an epoxide and a halide ion. Here, we present the X-ray structure of the haloalcohol dehalogenase HheAAD2 from Arthrobacter sp. strain AD2 at 2.0-Å resolution. Comparison with the previously reported structure of the 34% identical enantioselective haloalcohol dehalogenase HheC from Agrobacterium radiobacter AD1 shows that HheAAD2 has a similar quaternary and tertiary structure but a much more open substrate-binding pocket. Docking experiments reveal that HheAAD2 can bind both enantiomers of the haloalcohol substrate 1-p-nitrophenyl-2-chloroethanol in a productive way, which explains the low enantiopreference of HheAAD2. Other differences are found in the halide-binding site, where the side chain amino group of Asn182 is in a position to stabilize the halogen atom or halide ion in HheAAD2, in contrast to HheC, where a water molecule has taken over this role. These results broaden the insight into the structural determinants that govern reactivity and selectivity in the haloalcohol dehalogenase family.


2010 ◽  
Vol 66 (5) ◽  
pp. 577-583 ◽  
Author(s):  
Tetsuo Takimura ◽  
Kenji Kamata ◽  
Kazuhiro Fukasawa ◽  
Hirokazu Ohsawa ◽  
Hideya Komatani ◽  
...  

Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-θ, PKC-ι and PKC-βII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC–substrate complex has been determined. In the previously determined PKC-ι complex, residues 533–551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-ι kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 Å resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-ι are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-ι, which is different from the case of the prototypical AGC-branch kinase PKA.


2020 ◽  
Author(s):  
Jian Min ◽  
Jerome C. Nwachukwu ◽  
Sathish Srinivasan ◽  
Erumbi S. Rangarajan ◽  
Charles C. Nettles ◽  
...  

ABSTRACTTamoxifen and fulvestrant are currently two major approved estrogen receptor-α (ER)-targeted therapies for breast cancer, but resistance to their antagonistic actions often develops. Efforts to improve ER-targeted therapies have relied upon a single mechanism, where ligands with a single side chain on the ligand core that extends outward from the ligand binding pocket to directly displace helix (h)12 in the ER ligand-binding domain (LBD), blocking the LBD interaction with transcriptional coactivators that drive proliferation. Here, we describe ER inhibitors that block estrogen-induced proliferation through two distinct structural mechanisms by combining a side chain for direct antagonism with a bulky chemical group that causes indirect antagonism by distorting structural epitopes inside the ligand binding pocket. These dual-mechanism ER inhibitors (DMERIs) fully antagonize the proliferation of wild type ER-positive breast cancer cells and cells that have become resistant to tamoxifen and fulvestrant through activating ER mutations and de novo mechanisms such as overactive growth factor signaling. Conformational probing studies highlight marked differences that distinguish the dual mechanism inhibitors from current standard of care single-mechanism antiestrogens, and crystallographic analyses reveal that they disrupt the positioning of h11 and h12 in multiple ways. Combining two chemical targeting approaches into a single ligand thus provides a flexible platform for next generation ER-targeted therapies.


2020 ◽  
Author(s):  
Shane D. Anderson ◽  
Asna Tabassum ◽  
Jae Kyung Yeon ◽  
Garima Sharma ◽  
Priscilla Santos ◽  
...  

AbstractAngiotensin II type 1 receptor (AT1R) blockers (ARBs) are among the most prescribed drugs. However, ARB effectiveness varies widely, and some patients do not respond to ARB therapy. One reason for the variability between patients is non-synonymous single nucleotide polymorphisms (nsSNPs) within agtr1, the AT1R gene. There are over 100 nsSNPs in the AT1R; therefore, this study embarked on determining which nsSNPs may abrogate the binding of selective ARBs. The crystal structure of olmesartan-bound human AT1R (PDB:4ZUD) served as a template to create an inactive empty AT1R via molecular dynamics simulation (n = 3). All simulations resulted in a smaller ligand-binding pocket than 4ZUD due to the absence of olmesartan in the simulation yet remained inactive with little movement in the receptor core. A single frame representing the average stable AT1R was used as a template to thrice (n = 3) dock each ARB via AutoDock to obtain a predicted affinity from the weighted average of 100 docking simulations. The results were far from known values; thus, an optimization protocol was initiated, resulting in the predicted binding affinities within experimentally determined ranges (n = 6). The empty model AT1R was altered and minimized in Molecular Operating Environment software to represent 103 of the known human AT1R polymorphisms. Each of the eight ARBs was then docked, using the optimized parameters, to each polymorphic AT1R (n = 6). Although each nsSNP has little effect on global AT1R structure, most nsSNPs drastically alter a sub-set of ARBs affinity to the AT1R. Comparisons to previous binding studies suggest that the results have a 60% chance of predicting ARB resistance. Although more biochemical studies and refinement of the model are required to increase the accuracy of the prediction of ARB resistance, personalized ARB therapy based on agtr1 sequence could increase overall ARB effectiveness.Author SummaryThe term “personalized medicine” was coined at the turn of the century, but most medicines are currently prescribed based on disease categories and occasionally racial demographics, but not personalized attributes. In cardiovascular medicine, the personalization of medication is minimal; however, it is accepted that not all patients respond equally to common cardiovascular medications. Here we chose one prominent cardiovascular drug target, the angiotensin receptor, and, using computer modeling, created preliminary models of over 100 known alterations to the angiotensin receptor to determine if the alterations changed the ability of clinically used drugs to interact with the angiotensin receptor. The strength of interaction was compared to the unaltered angiotensin receptor, generating a map predicting which alteration affected each drug. It is expected that in the future, a patient’s receptors can be sequenced, and maps, such as the one presented here, can be used to select the optimum medication based on the patient’s genetics. Such a process would allow for the personalization of current medication therapy.


2018 ◽  
Author(s):  
Benjamin Parker ◽  
Edward Goncz ◽  
David T. Krist ◽  
Alexander Statsyuk ◽  
Alexey I. Nesvizhskii ◽  
...  

AbstractUnstructured peptides, or linear motifs, present a poorly understood molecular language within the context of cellular signaling. These modular regions are often short, unstructured and interact weakly and transiently with folded target proteins. Thus, they are difficult to study with conventional structural biology methods. We present Ligand-Footprinting Mass Spectrometry, or LiF-MS, as a method of mapping the binding sites and dynamic disorder of these peptides on folded protein domains. LiF-MS uses a cleavable crosslinker to mark regions of a protein contacted by a bound linear motif. We demonstrate this method can detect both conformation ensembles and binding orientations of a linear motif in its binding pocket to amino-acid-level detail. Furthermore, marked amino acids can be used as constraints in peptide-protein docking simulations to improve model quality. In conclusion, LiF-MS proves a simple and novel method of elucidating peptide docking structural data not accessible by other methods in the context of a purified system.


Sign in / Sign up

Export Citation Format

Share Document