A Voting Mechanism Designed for Talent Shows in Mass Media: Weighted Preference of Group Decision Makers in Social Networks Using Fuzzy Measures and Choquet Integral

Author(s):  
Mei Cai ◽  
Li Yan ◽  
Zaiwu Gong ◽  
Guo Wei
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision making problem with conflicting criteria and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multicriteria group decision making problem where the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic fuzzy environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Xiuqin ◽  
Xie Jialiang ◽  
Yue Na ◽  
Wang Honghui

PurposeThe purpose of this paper is to develop a probabilistic uncertain linguistic (PUL) TODIM method based on the generalized Choquet integral, with respect to the interdependencies between criteria, for the selection of the best alternate in the context of multiple criteria group decision-making (MCGDM).Design/methodology/approachOwing to decision makers (DMs) do not always show completely rational and may have the preference of bounded rational behavior, this may affect the result of the MCGDM. At the same time, criteria interaction is a focused issue in MCGDM. Hence, a novel TODIM method based on the generalized Choquet integral selects the best alternate using PUL evaluation, where the generalized Choquet integral is used to calculate the weight of criterion. The generalized PUL distance measure between two probabilistic uncertain linguistic elements (PULEs) is calculated and the perceived dominance degree matrices for each alternate relative to other alternates are obtained. Furthermore, the comprehensive perceived dominance degree of each alternate can be calculated to get the ranking.FindingsPotential application of the PUL-TODIM method is demonstrated through an evaluation example with sensitivity and comparative analysis.Originality/valueAs per author's concern, there are no TODIM methods with probabilistic uncertain linguistic sets (PULTSs) to solve MCGDM problems under uncertainty. Compared with the result of existing methods, the final judgment value of alternates using the extended TODIM methodology is highly corroborated, which proves its potential in solving MCGDM problems under qualitative and quantitative environments.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Lifei Zhang ◽  
Fanyong Meng

The purpose of this paper is to develop an approach to multiattribute group decision making under interval-valued hesitant fuzzy environment. To do this, this paper defines some new operations on interval-valued hesitant fuzzy elements, which eliminate the disadvantages of the existing operations. Considering the fact that elements in a set may be interdependent, two generalized interval-valued hesitant fuzzy operators based on the generalized Shapley function and the Choquet integral are defined. Then, some models for calculating the optimal fuzzy measures on the expert set and the ordered position set are established. Because fuzzy measures are defined on the power set, it makes the problem exponentially complex. To simplify the complexity of solving a fuzzy measure, models for the optimal 2-additive measures are constructed. Finally, an investment problem is offered to show the practicality and efficiency of the new method.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiang Jia ◽  
Yingming Wang

PurposeThe purpose of this paper is to develop a multi-criterion group decision-making (MCGDM) method by combining the regret theory and the Choquet integral under 2-tuple linguistic environment and apply the proposed method to deal with the supplier selection problem.Design/methodology/approachWhen making a decision, the decision-maker is more willing to choose the alternative(s) which is preferred by the experts so as to avoid the regret. At the same time, the correlative relationships among the criterion set can be sufficiently described by the fuzzy measures, later the evaluations of a group of criteria can be aggregated by means of the Choquet integral. Hence, the authors cope with the MCGDM problems by combining the regret theory and the Choquet integral, where the fuzzy measures of criteria are partly known or completely unknown and the evaluations are expressed by 2-tuples. The vertical and the horizontal regret-rejoice functions are defined at first. Then, a model aiming to determine the missing fuzzy measures is constructed. Based on which, an MCGDM method is proposed. The proposed method is applied to tackle a practical decision-making problem to verify its feasibility and the effectiveness.FindingsThe vertical and the horizontal regret-rejoice functions are defined. The relationships of the fuzzy measures are expressed by the sets. A model is built for determining the fuzzy measures. Based on which, an MCGDM method is proposed. The results show that the proposed method can solve the MCGDM problems within the context of 2-tuple, where the decision-maker avoids the regret and the criteria are correlative.Originality/valueThe paper proposes an MCGDM method by combining the regret theory and the Choquet integral, which is suitable for dealing with a variety of decision-making problems.


Author(s):  
WEI YANG

The group decision making problem with inter-dependent or interactive attributes is studied. By using the Choquet integral and the inducing variables, we develop the induced 2-tuple correlated averaging (ITCA) operator, the generalized induced 2-tuple correlated averaging (GITCA) operator and the quasi-arithmetic induced 2-tuple correlated averaging (QITCA) operator. The characteristics of the proposed operators are that the evaluation values of decision makers are in linguistic arguments, the correlations among the elements can be reflected and the ordering of the arguments is based on other associated variables instead of their own values. The properties of these operators are studied and new multiple attribute decision making method based on the new operators is proposed. Finally, architecture material supplier selection problem is provided to illustrate the feasibility and efficiency of the proposed method.


2021 ◽  
pp. 1-11
Author(s):  
Huiyuan Zhang ◽  
Guiwu Wei ◽  
Xudong Chen

The green supplier selection is one of the popular multiple attribute group decision making (MAGDM) problems. The spherical fuzzy sets (SFSs) can fully express the complexity and fuzziness of evaluation information for green supplier selection. Furthermore, the classic MABAC (multi-attributive border approximation area comparison) method based on the cumulative prospect theory (CPT-MABAC) is designed, which is an optional method in reflecting the psychological perceptions of decision makers (DMs). Therefore, in this article, we propose a spherical fuzzy CPT-MABAC (SF-CPT-MABAC) method for MAGDM issues. Meanwhile, considering the different preferences of DMs to attribute sets, we obtain the objective weights of attributes through entropy method. Focusing on the current popular problems, this paper applies the proposed method for green supplier selection and proves for green supplier selection based on SF-CPT-MABAC method. Finally, by comparing existing methods, the effectiveness of the proposed method is certified.


2021 ◽  
pp. 1-18
Author(s):  
Jiahang Yuan ◽  
Yun Li ◽  
Xinggang Luo ◽  
Lingfei Li ◽  
Zhongliang Zhang ◽  
...  

Regional integrated energy system (RIES) provides a platform for coupling utilization of multi-energy and makes various energy demand from client possible. The suitable RIES composition scheme will upgrade energy structure and improve integrated energy utilization efficiency. Based on a RIES construction project in Jiangsu province, this paper proposes a new multi criteria decision-making (MCDM) method for the selection of RIES schemes. Because that subjective evaluation on RIES schemes benefit under criteria has uncertainty and hesitancy, intuitionistic trapezoidal fuzzy number (ITFN) which has the better capability to model ill-known quantities is presented. In consideration of risk attitude and interdependency of criteria, a new decision model with risk coefficients, Mahalanobis-Taguchi system and Choquet integral is proposed. Firstly, the decision matrices given by experts are normalized, and then are transformed to minimum expectation matrices according to different risk coefficients. Secondly, the weights of criteria from different experts are calculated by Mahalanobis-Taguchi system. Mobius transformation coefficients based on interaction degree are to calculate 2-order additive fuzzy measures, and then the comprehensive weights of criteria are obtained by fuzzy measures and Choquet integral. Thirdly, based on group decision consensus requirement, the weights of experts are obtained by the maximum entropy and grey correlation. Fourthly, the minimum expectation matrices are aggregated by the intuitionistic trapezoidal fuzzy Bonferroni mean operator. Thus, the ranking result according to the comparison rules using the minimum expectation and the maximum expectation is obtained. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.


Sign in / Sign up

Export Citation Format

Share Document