Microzooplankton grazing and the control of phytoplankton biomass in the Suwannee River estuary, USA

Hydrobiologia ◽  
2009 ◽  
Vol 632 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Erin L. Quinlan ◽  
Christina H. Jett ◽  
Edward J. Phlips
2015 ◽  
Vol 12 (22) ◽  
pp. 6809-6822 ◽  
Author(s):  
L. Zhou ◽  
Y. Tan ◽  
L. Huang ◽  
Z. Hu ◽  
Z. Ke

Abstract. To examine seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in oligotrophic tropical waters under the influence of seasonal reversing monsoon, dilution experiments were conducted during the summer of 2009 (21 May to 9 June) and winter 2010 (9 to 18 November) in the southern South China Sea (SSCS). The results showed that environmental variables, phytoplankton biomass, phytoplankton growth rate (μ), microzooplankton grazing rate (m), and correlationship (coupling) between the μ and m, rather than the microzooplankton grazing impact on phytoplankton (m/μ) significantly varied between the two seasons. Higher relative preference index (RPI) for the larger-sized (> 3 μm) phytoplankton than pico-phytoplankton (< 3 μm), indicating significant size-selective grazing by microzooplankton on the larger-sized phytoplankton, were also observed. The μ and m were significantly correlated with seawater salinity and temperature, and phytoplankton biomass, which indicated that salient seasonal variations in the phytoplankton growth and microzooplankton grazing in the SSCS were closely related to the environmental variables under the influence of the East Asian monsoon. We propose that intermittent arrivals of the northeast winter monsoon could lead to the low μ and m, and the decoupling between the μ and m in the SSCS, through influencing nutrient supply to the surface water, and inducing surface seawater salinity decrease. The low m/μ (< 50 % on average) indicates low remineralization of organic matter mediated by microzooplankton and mismatch between the μ and m, and thus probably accounts for part of the high vertical biogenic particle fluxes in the prevailing periods of the monsoons in the SSCS. The size-selective grazing suggests that microzooplankton grazing partially contributes to the pico-phytoplankton dominance in the oligotrophic tropical waters such as that of the SSCS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristina D. A. Mojica ◽  
Michael J. Behrenfeld ◽  
Megan Clay ◽  
Corina P. D. Brussaard

For nearly a century, phytoplankton spring blooms have largely been explained in the context of abiotic factors regulating cellular division rates (e.g., mixed-layer light levels). However, the accumulation of new phytoplankton biomass represents a mismatch between phytoplankton division and mortality rates. The balance between division and loss, therefore, has important implications for marine food webs and biogeochemical cycles. A large fraction of phytoplankton mortality is due to the combination of microzooplankton grazing and viral lysis, however, broad scale simultaneous measurements of these mortality processes are scarce. We applied the modified dilution assay along a West-to-East diagonal transect in the North Atlantic during spring. Our results demonstrate positive accumulation rates with losses dominated by microzooplankton grazing. Considering the dynamic light environment phytoplankton experience in the mixed surface layer, particularly in the spring, we tested the potential for incubation light conditions to affect observed rates. Incubations acted as short-term ‘light’ perturbations experiments, in which deeply mixed communities are exposed to elevated light levels. These “light perturbations” increased phytoplankton division rates and resulted in proportional changes in phytoplankton biomass while having no significant effect on mortality rates. These results provide experimental evidence for the Disturbance-Recovery Hypothesis, supporting the tenet that biomass accumulation rates co-vary with the specific rate of change in division.


Sign in / Sign up

Export Citation Format

Share Document