scholarly journals Oligotrophication of Lake Balaton over a 20-year period and its implications for the relationship between phytoplankton and zooplankton biomass

Hydrobiologia ◽  
2020 ◽  
Vol 847 (19) ◽  
pp. 3999-4013
Author(s):  
Gábor Bernát ◽  
Nóra Boross ◽  
Boglárka Somogyi ◽  
Lajos Vörös ◽  
László G.-Tóth ◽  
...  

Abstract Lake Balaton, the largest lake in Central Europe, underwent severe eutrophication from the 1960s to the 1990s, due to phosphorus loadings from external anthropogenic sources. The subsequent and complex eutrophication control and lake restoration program resulted in a significant decrease in the external phosphorus loading to the lake. Consequently, Lake Balaton has been returning to its former meso-eutrophic character. In this paper, we explore the long-term dynamics of chlorophyll a (Chl a) concentration, a proxy for phytoplankton biomass, and zooplankton biomass in Lake Balaton during its re-oligotrophication period from 2001 to 2017, and attempt to draw some conclusions on the subsequent changes in the fish stock. We found a proportional decrease in zooplankton and phytoplankton biomasses at moderate phytoplankton levels. However, below a certain phytoplankton concentration (< 10 μg l−1 Chl a), the decrease in phytoplankton biomass was not coupled with a further decline in zooplankton biomass because the fraction of small phytoplankton, edible for zooplankton, showed a much smaller decrease in biomass compared with large non-edible phytoplankton. Thus, improvements in water quality (i.e., reduced nutrient loading), partly via concomitant changes in the phytoplankton size distribution, did not cause a large difference in the fish stock in this shallow lake.

1999 ◽  
Vol 39 (12) ◽  
pp. 99-107 ◽  
Author(s):  
Takao Kunimatsu ◽  
Miki Sudo ◽  
Takeshi Kawachi

In the last ten years, the number of golf courses has been increasing in some countries as the game gains popularity. This indicates, a need to estimate the nutrient loading from golf courses in order to prevent the eutrophication of water bodies. Nutrient concentrations and flow rates of a brook were measured once a week from 1989 to 1990 at two sites: Site A of a brook flowing out from D-golf course (53 ha) and Site B of the same brook discharging into the golf course from an upper forested basin (23 ha) covered mainly with planted Japanese cypress (Chamaecyparis obtusa SIEB. et ZUCC). The bedrock of the area was granite. The annual values of precipitation and mean temperature were 1947 mm and 13.5°C in 1989, respectively. The arithmetic average values of discharge from the forested basin and the golf course were 0.392 and 1.26 mg/l total nitrogen (TN), 0.0072 and 0.145 mg/l total phosphorus (TP), 0.82 and 3.53 mg/l potassium ion (K+, 5.92 and 8.24 mg/l sodium ion (Na+), 2.1 and 9.9 mg/l suspending solid (0.001–2.0 mm, SS), 0.087 and 0.147 mS/cm electric conductivity (EC), and 0.031 and 0.037 m3/km2•s specific discharge, respectively. The loading rates of the forested basin and the golf course were 5.42 and 13.5 TN, 0.133 and 3.04 TP, 8.84 and 33.9 K+, 55.0 and 73.0 Na+, and 54.3 and 118 SS in kg/ha•y. The leaching and runoff rate of nitrogen in the chemical fertilizers applied on the golf course was calculated as 32%. These results indicated the importance of controlling the phosphorus loading for the management of golf courses.


2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2001 ◽  
Vol 1 ◽  
pp. 605-614 ◽  
Author(s):  
J.H. Janse ◽  
W. Ligtvoet ◽  
S. Van Tol ◽  
A.H.M. Bresser

Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake[1]. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
A.-K. Bergström ◽  
A. Deininger ◽  
A. Jonsson ◽  
J. Karlsson ◽  
T. Vrede

AbstractWe used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.


2010 ◽  
Vol 67 (8) ◽  
pp. 1211-1220 ◽  
Author(s):  
Derek C. West ◽  
Annika W. Walters ◽  
Stephen Gephard ◽  
David M. Post

Anadromous alewives ( Alosa pseudoharengus ) have the potential to alter the nutrient budgets of coastal lakes as they migrate into freshwater as adults and to sea as juveniles. Alewife runs are generally a source of nutrients to the freshwater lakes in which they spawn, but juveniles may export more nutrients than adults import in newly restored populations. A healthy run of alewives in Connecticut imports substantial quantities of phosphorus; mortality of alewives contributes 0.68 g P·fish–1, while surviving fish add 0.18 g P, 67% of which is excretion. Currently, alewives contribute 23% of the annual phosphorus load to Bride Lake, but this input was much greater historically, with larger runs of bigger fish contributing 2.5 times more phosphorus in the 1960s. A mesocosm experiment in a nearby lake showed that juvenile alewife growth is strongly density dependent, but early survival may be too low for juvenile outmigration to balance adult inputs. In eutrophic systems where nutrients are a concern, managers can limit nutrient loading by capping adult returns at a level where juvenile populations would not be suppressed.


1991 ◽  
Vol 24 (4) ◽  
pp. 2517-2518
Author(s):  
Gábor Paulovits ◽  
Péter Biró
Keyword(s):  

2017 ◽  
Vol 14 (11) ◽  
pp. 2877-2889 ◽  
Author(s):  
Sophie Clayton ◽  
Stephanie Dutkiewicz ◽  
Oliver Jahn ◽  
Christopher Hill ◽  
Patrick Heimbach ◽  
...  

Abstract. We present a systematic study of the differences generated by coupling the same ecological–biogeochemical model to a 1°, coarse-resolution, and 1∕6°, eddy-permitting, global ocean circulation model to (a) biogeochemistry (e.g., primary production) and (b) phytoplankton community structure. Surprisingly, we find that the modeled phytoplankton community is largely unchanged, with the same phenotypes dominating in both cases. Conversely, there are large regional and seasonal variations in primary production, phytoplankton and zooplankton biomass. In the subtropics, mixed layer depths (MLDs) are, on average, deeper in the eddy-permitting model, resulting in higher nutrient supply driving increases in primary production and phytoplankton biomass. In the higher latitudes, differences in winter mixed layer depths, the timing of the onset of the spring bloom and vertical nutrient supply result in lower primary production in the eddy-permitting model. Counterintuitively, this does not drive a decrease in phytoplankton biomass but results in lower zooplankton biomass. We explain these similarities and differences in the model using the framework of resource competition theory, and find that they are the consequence of changes in the regional and seasonal nutrient supply and light environment, mediated by differences in the modeled mixed layer depths. Although previous work has suggested that complex models may respond chaotically and unpredictably to changes in forcing, we find that our model responds in a predictable way to different ocean circulation forcing, despite its complexity. The use of frameworks, such as resource competition theory, provides a tractable way to explore the differences and similarities that occur. As this model has many similarities to other widely used biogeochemical models that also resolve multiple phytoplankton phenotypes, this study provides important insights into how the results of running these models under different physical conditions might be more easily understood.


1989 ◽  
Vol 46 (5) ◽  
pp. 770-779 ◽  
Author(s):  
K. H. Nicholls ◽  
D. A. Hurley

A 50% reduction in phosphorus loading to the upper Bay of Quinte (Lake Ontario) from municipal sources in 1977 was followed by a major decline in phytoplankton biomass in 1978. However, by 1984–85, biomasses again approached those of the pre-phosphorus control period, despite continued low phosphorus loadings. No major shifts in phytoplankton composition occurred; domination by the diatoms Melosira and Stephanodiscus spp. and the blue-green algae Anabaena and Aphanizomenon spp. has continued. Highly significant positive correlation coefficients (r = 0.92–0.98) were found for phytoplankton — fish relationships during both the pre- and postphosphorus removal periods which coincided with pre- and postdie-off periods of white perch (Morone americana) and alewife (Alosa pseudoharengus). For the entire 16-yr period of data collection, a multiple regression model fitting upper bay phytoplankton biomass (with an adjusted R2 of 0.83) was developed with five input variables. White perch biomass alone explained more than 50% of the variance in the model. It is hypothesized that trophic interactions among other biotic components in the Bay of Quinte may be very important in controlling phytoplankton biomass.


Sign in / Sign up

Export Citation Format

Share Document