Riparin B, a Synthetic Compound Analogue of Riparin, Inhibits the Systemic Inflammatory Response and Oxidative Stress in Mice

Inflammation ◽  
2015 ◽  
Vol 38 (6) ◽  
pp. 2203-2215 ◽  
Author(s):  
Renata Fortes Santiago ◽  
Tarcisio Vieira de Brito ◽  
Jordana Maia Dias ◽  
Genilson José Dias ◽  
José Simião da Cruz ◽  
...  
Inflammation ◽  
2014 ◽  
Author(s):  
Thiago Henrique Costa Marques ◽  
Maria Leonildes Boavista Gomes Cast Marques ◽  
Jand-Venes R. Medeiros ◽  
Renan Oliveira Silva ◽  
André Luiz dos Reis Barbosa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haijun Zhao ◽  
Yanhui He

Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.


2014 ◽  
Vol 37 (2) ◽  
pp. 58 ◽  
Author(s):  
Josefina Duran-Bedolla ◽  
Marco A Montes de Oca-Sandoval ◽  
Vianey Saldaña-Navor ◽  
José A Villalobos-Silva ◽  
Maria Carmen Rodriguez ◽  
...  

Purpose: The purpose of this review is to consider the state of oxidative stress, failure of the antioxidant systems and mitochondrial failure as the main physiopathological mechanisms leading to multiple organ dysfunction during sepsis. Principal findings: Sepsis is a clinical syndrome caused by a severe infection that triggers an exaggerated inflammatory response. Involved in the pathogenesis of sepsis are the activation of inflammatory, immune, hormonal, metabolic and bioenergetic responses. One of the pivotal factors in these processes is the increase of reactive species accompanied by the failure of the antioxidant systems, leading to a state of irreversible oxidative stress and mitochondrial failure. In a physiological state, reactive species and antioxidant systems are in redox balance. The loss of this balance during both chronic and infectious diseases leads to a state of oxidative stress, which is considered to be the greatest promoter of a systemic inflammatory response. The loss of the redox balance, together with a systemic inflammatory response during sepsis, can lead to progressive and irreversible mitochondrial failure, energy depletion, hypoxia, septic shock, severe sepsis, multiple organ dysfunction and death of the patient. Conclusion: Knowledge of the molecular processes associated with the development of oxidative stress should facilitate the development of effective therapies and better prognosis for patients with sepsis and organ dysfunction.


2018 ◽  
Vol 310 (9) ◽  
pp. 759-767 ◽  
Author(s):  
Tuğba Falay Gur ◽  
Aslı Vefa Erdemir ◽  
Mehmet Salih Gurel ◽  
Abdurrahim Kocyigit ◽  
Eray Metin Guler ◽  
...  

Author(s):  
Alaaeldin Ahmed Hamza ◽  
Mona Gamel Mohamed ◽  
Fawzy Mohamed Lashin ◽  
Amr Amin

Sign in / Sign up

Export Citation Format

Share Document