Resveratrol Protects against Titanium Particle-Induced Aseptic Loosening Through Reduction of Oxidative Stress and Inactivation of NF-κB

Inflammation ◽  
2016 ◽  
Vol 39 (2) ◽  
pp. 775-785 ◽  
Author(s):  
Guotian Luo ◽  
Ziqing Li ◽  
Yu Wang ◽  
Haixing Wang ◽  
Ziji Zhang ◽  
...  
2021 ◽  
Author(s):  
Weishen Chen ◽  
Guoyan Xian ◽  
Minghui Gu ◽  
Baiqi Pan ◽  
Xiaoyu Wu ◽  
...  

Aseptic loosening caused by peri-implant osteolysis (PIO) is a common complication after joint replacement, and there is still no better treatment than revision surgery. The wear particle-induced inflammation response, especially...


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hao Xu ◽  
Cui-cui Guo ◽  
Zheng-yu Gao ◽  
Chang-yao Wang ◽  
Hai-ning Zhang ◽  
...  

Wear debris induced aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure. The complex mechanism of aseptic loosening has been a major issue for introducing effective prevention and treatment methods, so a simplified yet efficient rabbit model was established to address this concern with the use of micrometer-sized titanium particles. 20 New Zealand white rabbits were selected and divided into two groups (control = 10, study = 10). A TKA surgery was then performed for each of them, with implantation of a titanium rod prosthesis which was coated evenly with micrometer-sized titanium in the study group and nothing in the control group, into right femoral medullary cavity. After 12 weeks, all the animals were euthanized and X-ray analyses, H&E staining, Goldner Masson trichrome staining, Von Kossa staining, PCR, and Western blotting of some specific mRNAs and proteins in the interface membrane tissues around the prosthesis were carried out. The implantation of a titanium rod prosthesis coated with 20 μm titanium particles into the femoral medullary cavity of rabbits caused continuous titanium particle stimulation around the prosthesis, effectively inducing osteolysis and aseptic loosening. Titanium particle-induced macrophages produce multiple inflammatory factors able to activate osteoclast differentiation through the OPG/RANKL/RANK signaling pathway, resulting in osteolysis while suppressing the function of osteoblasts and reducing bone ingrowth around the prosthesis. This model simulated the implantation and loosening process of an artificial prosthesis, which is an ideal etiological model to study the aseptic prosthetic loosening.


2020 ◽  
Vol 8 (11) ◽  
pp. 3147-3163
Author(s):  
Junxiong Qiu ◽  
Peng Peng ◽  
Min Xin ◽  
Zhenkang Wen ◽  
Zhong Chen ◽  
...  

Aseptic loosening (AL) caused by wear particles released from implant surfaces is one of the main causes for the failure of artificial joints, which is initiated by macrophage inflammatory responses.


2014 ◽  
Vol 29 (4) ◽  
pp. 843-849 ◽  
Author(s):  
Marla J. Steinbeck ◽  
Lauren J. Jablonowski ◽  
Javad Parvizi ◽  
Theresa A. Freeman

2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
S ALEYNIK ◽  
M ALEYNIK ◽  
C LIEBER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document